DOI QR코드

DOI QR Code

A CLASS OF EDGE IDEALS WITH REGULARITY AT MOST FOUR

  • Received : 2017.11.25
  • Accepted : 2018.07.20
  • Published : 2018.11.30

Abstract

If a graph G is both claw-free and gap-free, then E. Nevo showed that the Castelnuovo-Mumford regularity of the associated edge ideal I(G) is at most three. Later Dao, Huneke and Schwieg gave a simpler proof of this result. In this paper we introduce a class of edge ideals with Castelnuovo-Munmford regularity at most four.

Keywords

References

  1. S. Beyarslan, H. T. Ha, and T. N. Trung, Regularity of powers of forests and cycles, J. Algebraic Combin. 42 (2015), no. 4, 1077-1095. https://doi.org/10.1007/s10801-015-0617-y
  2. S. D. Cutkosky, J. Herzog, and N. V. Trung, Asymptotic behaviour of the Castelnuovo-Mumford regularity, Compositio Math. 118 (1999), no. 3, 243-261. https://doi.org/10.1023/A:1001559912258
  3. H. Dao, C. Huneke, and J. Schweig, Bounds on the regularity and projective dimension of ideals associated to graphs, J. Algebraic Combin. 38 (2013), no. 1, 37-55. https://doi.org/10.1007/s10801-012-0391-z
  4. R. Froberg, On Stanley-Reisner rings, in Topics in algebra, Part 2 (Warsaw, 1988), 57-70, Banach Center Publ., 26, Part 2, PWN, Warsaw, 1990.
  5. I. Gitler and C. E. Valencia, Bounds for invariants of edge-rings, Comm. Algebra 33 (2005), no. 5, 1603-1616. https://doi.org/10.1081/AGB-200061033
  6. H. T. Ha and A. Van Tuyl, Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers, J. Algebraic Combin. 27 (2008), no. 2, 215-245. https://doi.org/10.1007/s10801-007-0079-y
  7. M. Kummini, Regularity, depth and arithmetic rank of bipartite edge ideals, J. Algebraic Combin. 30 (2009), no. 4, 429-445. https://doi.org/10.1007/s10801-009-0171-6
  8. M. Moghimian, S. A. S. Fakhari, and S. Yassemi, Regularity of powers of edge ideal of whiskered cycles, Comm. Algebra 45 (2017), no. 3, 1246-1259. https://doi.org/10.1080/00927872.2016.1175605
  9. E. Nevo, Regularity of edge ideals of $C_4$-free graphs via the topology of the lcm-lattice, J. Combin. Theory Ser. A 118 (2011), no. 2, 491-501. https://doi.org/10.1016/j.jcta.2010.03.008
  10. S. A. Seyed Fakhari, Depth, Stanley depth, and regularity of ideals associated to graphs, Arch. Math. (Basel) 107 (2016), no. 5, 461-471. https://doi.org/10.1007/s00013-016-0965-4
  11. S. A. Seyed Fakhari and S. Yassemi, Improved bounds for the regularity of edge ideals of graphs, Collect. Math. 69 (2018), no. 2, 249-262. https://doi.org/10.1007/s13348-017-0204-8
  12. R. Woodroofe, Matchings, coverings, and Castelnuovo-Mumford regularity, J. Commut. Algebra 6 (2014), no. 2, 287-304. https://doi.org/10.1216/JCA-2014-6-2-287