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A CLASS OF EDGE IDEALS WITH REGULARITY

AT MOST FOUR

Seyed Abbas Seyedmirzaei and Siamak Yassemi

Abstract. If a graph G is both claw-free and gap-free, then E. Nevo

showed that the Castelnuovo-Mumford regularity of the associated edge
ideal I(G) is at most three. Later Dao, Huneke and Schwieg gave a

simpler proof of this result. In this paper we introduce a class of edge
ideals with Castelnuovo-Munmford regularity at most four.

1. Introduction

Let I be a homogeneous ideal in the polynomial ring S = K[x1, . . . , xn].
Suppose that the minimal free resolution of I is given by

0 −→
⊕
j

S(−j)βp,j −→ · · · −→
⊕
j

S(−j)β1,j −→
⊕
j

S(−j)β0,j −→ I −→ 0.

The Castelnuovo-Mumford regularity (or simply, regularity) of I, denoted by
reg(I), is defined as

reg(I) = max{i |βj,j+i(I) 6= 0},
and is an important invariant in commutative algebra and algebraic geometry.
Computing and finding bounds for the regularity of a monomial ideal have been
studied by a number of researchers (see for example [2, 3, 5, 7–11]).

Let G be a graph without isolated vertices. Recall that the edge ideal of G
is

I(G) = (xiyj : {xi, yj} is an edge of G).

For any graph G, we write reg(G) as shorthand for reg(I(G)).
A classical result due to Fröberg says that reg(G) = 2 if and only if the

complementary graph Gc is chordal, i.e., has no induced cycle of length at
least four (see [4]). In 2011, E. Nevo showed that for a graph G which is both
claw-free and gap-free, the Castelnuovo-Munmford regularity of the associated
edge ideal I(G) is at most three (see [9, Theorem 2.1]). Later Dao, Huneke
and Schwieg gave a simpler proof of this result (see [3, Theorem 3.4]). By
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this motivation, we introduce a class of edge ideals with Castelnuovo-Mumford
regularity at most four.

2. Preliminaries

In this section, we provide the definitions and the basic facts which will be
used in the next section.

Let G be a finite, simple graph with vertex set V (G) and edge set E(G). For
v, w ∈ V (G), we write d(v, w) for the distance between v and w, the minimum
number of edges in a path from v to w.

A subgraph H ⊆ G is called induced if {v, w} is an edge of H whenever v
and w are vertices of H and {v, w} is an edge of G.

The complement of a graph G, denote by Gc, is the graph on the same vertex
set as G, in which {x, y} is an edge of Gc if and only if it is not an edge of G.

We let Cn denote the cycle on n vertices, Kn denote the complete graph on
n vertices and km,n denote the complete bipartite graph with m vertices on one
side, and n on the other. Adding a whisker to G at a vertex v means adding a
new vertex u and the edge {u, v} to G. The graph which is obtained from G
by adding a whisker to all of its vertices will be denoted by W (G).

A subset M ⊆ E(G) is a matching if e ∩ e′ = ∅ for every pair of edges
e, e′ ∈ M . The cardinality of the largest matching of G is called the matching
number of G and is denoted by match(G). The minimum cardinality of the
maximal matchings of G is the minimum matching number of G and is denoted
by min-match(G). A matching M of G is an induced matching of G if for every
pair of edges e, e′ ∈ M , there is no edge f ∈ E(G) \M with f ⊂ e ∪ e′. The
cardinality of the largest induced matching of G is called the induced matching
number of G and is denoted by ind-match(G).

Let G be a graph. We say two edges {w, x} and {y, z} form a gap in G if
G does not have an edge with one endpoint in {w, x} and the other in {y, z}.
In other words, a gap is an induced matching of size two. A graph which has
no gap as an induced subgraph is called gap-free. Equivalently, G is gap-free if
Gc contains no induced C4.

Any graph isomorphic to the complete bipartite graph k1,3 is called a claw.
A graph without an induced claw is called claw-free.

Recall that the star of a vertex x of G for which we write st(x), is given by

st(x) = {y ∈ V (G) : {x, y} is an edge of G} ∪ {x}.

The following lemma from [3] has a crucial role in this paper.

Lemma 2.1 ([3, Lemma 3.2]). Let x be a vertex of G. Then

reg(G) ≤ max{reg(G− st(x)) + 1, reg(G− x)}.

Moreover, reg(G) is equal to one of these terms.
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3. Main results

In this section, we prove the main result of this paper. Namely, in Theorem
3.3, we introduce a class of graphs with regularity at most four.

Definition 3.1. Let G be a graph. We say three edges {w1, w2}, {w2, w3},
{w4, w5} form a 3-gap in G if G does not have an edge with one end point in
{w1, w2, w3} and the other in {w4, w5}. A graph which has no induced 3-gap
is called 3-gap-free.

In the following proposition, we study a property of 3-gap-free graphs which
will be used in the proof of Theorem 3.3.

Proposition 3.2. Let G be a 3-gap-free graph, and let x be vertex of G of
highest degree. Then d(x, y) ≤ 3 for all vertices y of G.

Proof. By contradiction, assume that G has a vertex y with d(x, y) = 4. Let
x have degree m, and list neighbors of x as w1, w2, . . . , wm. Without loss
of generality suppose that {w1, z1}, {z1, z2}, {z2, y} are edges of G for some
vertices z1, z2. For any i with 2 ≤ i ≤ m, {x,wi} and {z1, z2}, {z2, y} dose not
form a 3-gap in G. Thus, there must be an edge with one end point in {x,wi}
and one in {z1, z2, y}. Because d(x, y) and d(x, zi) both exceed 1, this edge
cannot have x as an end point. If d(x, zi) = 1, then d(x, y) = 3 − (i − 1) and
this contradict d(x, y) = 4. Similarly, {wi, y} can not be an edge, as otherwise,
we would have d(x, y) = 2, which is again a contradiction. Thus {z1, wi} is an
edge for each i with 1 ≤ i ≤ m (note that we already established that {z1, w1}
is an edge). Since {z1, y} is an edge of G as well, the degree of z1 exceeds
m, which is a contradiction. Similarly if {wi, z2} is an edge for each i with
1 ≤ i ≤ m, then degree z2 exceeds m, which is impossible. �

We are now ready to prove the main result of this paper.

Theorem 3.3. Let G be a 3-gap-free graph which does not have the following
subgraphs as an induced subgraph.

Then reg(G) ≤ 4.

Proof. We use induction on |V (G)|. There is nothing to prove if |V (G)| ≤ 4.
Thus, assume that |V (G)| ≥ 5. Let x be a vertex of G of highest degree. By
Lemma 2.1, we know that

reg(G) ≤ max{reg(G− st(x)) + 1, reg(G− x)}.
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Note that G − x satisfies the assumptions. Hence, by induction hypothesis,
we have reg(G − x) ≤ 4. It remains to be show that reg(G − st(x)) ≤ 3. By
[4] it is enough to show that (G − st(x))c contains no induced cycle of length
≥ 4. Suppose on the contrary that y1, y2, . . . , ym are the vertices of an induced
cycle in (G − st(x))c with m ≥ 4. By Proposition 3.2, the distance of each yi
from x in G is at most 3. Note that d(x, y1) 6= 1, as y1 belongs to vertices
G − st(x). If d(x, y1) = 2, then {x, z1} and {z1, y1} are edges of G for some
vertex z1. Further {y2, ym} is an edge of G, since y2 and ym are not adjacent
in (G− st(x))c. Note that {y1, y2} and {y1, ym} are not edges of G. Since G is
3-gap-free it contains either of edges {z1, y2} or {z1, ym}. Since the graph (1)
is not an induced subgraph of G, we conclude that G must have both edges
{z1, y2} and {z1, ym}. On the other hand, in this case G contains the graph (2)
as an induced subgraph which is a contradiction. Now assume that d(x, y1) = 3.
Then {x,w1}, {w1, w2}, {w2, y1} are edges of G for some vertices w1 and w2 in
G. Further, y2 and ym are not adjacent in (G− st(x))c. Note that {y1, y2} and
{y1, ym} are not edges of G. Since G is 3-gap-free, it contains either of edges
{w2, ym} or {w2, y2}. As the graph (1) is not an induced subgraph of G, we
conclude that G must have both edges {w2, y2} and {w2, ym}. On the other
hand, in this case, G contains the graph (2) as an induced subgraph which is a
contradiction. Similarly, {w1, y2} and {w1, ym} are not edges of G. �

The following example shows that the assumptions of Theorem 3.3 can not
be dropped.

Example 3.4. (1) For every n ≥ 11, consider the n-cycle graph Cn. Then
G has no induced subgraph isomorphic to graphs (1) and (2) of Theo-
rem 3.3. On the other hand, it is clear that Cn contains a 3-gap. We
know form [1, Theorem 1.2] that for every n ≥ 11, the regularity of
Cn is at least 5. Thus, the assumption of being 3-gap-free can not be
removed from the hypothesis of Theorem 3.3.

(2) For every integer m ≥ 4, let G be the union of m triangles which have
a common vertex. Then clearly, G is 3-gap-free and has no induced
subgraph isomorphic to graph (1) of Theorem 3.3. However, it has
induced subgraphs isomorphic to graph (2) of Theorem 3.3. As G
is a chordal graph, it follows from [6, Corollary 6.9] that reg(G) =
ind−match(G) + 1 = m + 1 ≥ 5. Thus, the assumption of having no
induced subgraph isomorphic to graph (2) can not be removed from
the hypothesis of Theorem 3.3.

(3) For every n ≥ 4, let G = W (K1,n) be the graph obtained from the com-
plete bipartite graph K1,n by attaching a whisker to all of its vertices.
Then clearly, G is 3-gap-free and has no induced subgraph isomorphic
to graph (2) of Theorem 3.3. However, it has induced subgraphs iso-
morphic to graph (1) of Theorem 3.3. As G is a chordal graph, it follows
from [6, Corollary 6.9] that reg(G) = ind-match(G) + 1 = n + 1 ≥ 5.
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Thus, the assumption of having no induced subgraph isomorphic to
graph (1) can not be removed from the hypothesis of Theorem 3.3.

By [12], we know that for every graph G,

(∗) reg(I(G)) ≤ min-match(G) + 1.

The following example shows that the conclusion of Theorem 3.3 does not
follow from this inequality.

Example 3.5. For every integer m ≥ 4, consider the graph K2m. Then
min-match(G) = m ≥ 4. Thus, the upper bound given in inequality (∗) is
at least 5, which is weaker than the bound provided in Theorem 3.3. We recall
the well-known fact that the regularity of any complete graph is two.

Acknowledgment. The authors thank the referee for careful reading of the
paper and for valuable comments.
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[4] R. Fröberg, On Stanley-Reisner rings, in Topics in algebra, Part 2 (Warsaw, 1988),

57–70, Banach Center Publ., 26, Part 2, PWN, Warsaw, 1990.

[5] I. Gitler and C. E. Valencia, Bounds for invariants of edge-rings, Comm. Algebra 33
(2005), no. 5, 1603–1616.
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