DOI QR코드

DOI QR Code

A brief review on Oyster shells origin and sedimentary evolution for the formation of limestone

  • Ramakrishna, Chilakala (Department of Bio-based Materials, School of Agriculture and Life Science, Chungnam National University) ;
  • Thriveni, Thenepalli (Department of R&D Team, Hanil Cement Corporation) ;
  • Whan, Ahn Ji (Center for Carbon Mineralization, Climate Change Mitigation and Sustainability Division, Korea Institute of Geosciences and Mineral Resources (KIGAM))
  • Received : 2018.08.07
  • Accepted : 2018.09.14
  • Published : 2018.09.30

Abstract

The shell waste biomineralization process has known a tremendous metamorphosis and also the nanostructure with the identification of matrix proteins in oyster shells. However, proteins are represented in minor shell components and they are the major macromolecules that control biocrystal synthesis. Aragonite and calcite were derived from molluscan shells and evaluated the source of carbonate minerals and it helps for the formation of limestone. The oyster shell wastes are large and massive. The paleoecological study of oyster beds has discovered a near-shore and thin Upper Rudeis formation with storm influence during the accumulation of oysters with highly altered by disarticulation, bioerosion, and encrustation. It is possible even in the Paleozoic mollusks provided sufficient carbonate entirely to the source of microcrystalline of limestone. The present review is to discuss paleoecologically a number of oyster shell beds accumulated and sediment to form the different types of limestone during the Middle Miocene time.

Keywords

References

  1. Blomeier, D.P.G., Reijmer, J.J.G., 1999, Drowning of a lower Jurassic carbonate platform: Jbel Bou Dahar, high Atlas, Morocco. Facies, 41, 81-110. https://doi.org/10.1007/BF02537461
  2. Badenas, B., Aurell, M., 2001. Proximal-distal facies relationships and sedimentary processes in a storm dominated carbonate ramp (Kimmeridgian, northwest of the Iberian Ranges, Spain). Sediment. Geol, 139, 319-340. https://doi.org/10.1016/S0037-0738(00)00151-2
  3. Pierre, A., Durlet, C., Razin, P., Chellai, E.H., 2010, Spatial and temporal distribution of zooids along a Jurassic carbonate ramp: Amellago outcrop transect, High-Atlas, Morocco. Geol. Soc. Lond. Spec. Publ, 329, 65-88. https://doi.org/10.1144/SP329.4
  4. Dera, G., Brigaud, B., Monna, F., Laffont, R., Puceat, E., Deconinck, J-F., Pellenard, P., Joachimski, M.M., Durlet, C., 2011, Climatic ups and downs in a disturbed Jurassic world. Geology 39, 215-218. https://doi.org/10.1130/G31579.1
  5. rigaud, B., Vincent, B., Carpentier, C., Robin, C., Guillocheau, F., Yven, B., Huret, E., 2014, Growth and demise of the Jurassic carbonate platform in the intracratonic Paris Basin (France): interplay of climate change, eustasy and tectonics. Mar. Petrol. Geol, 53, 3-29. https://doi.org/10.1016/j.marpetgeo.2013.09.008
  6. Andrieu, S., Brigaud, B., Barbarand, J., Lasseur, E., Saucede, T., 2016, Disentangling the control of tectonics, eustasy, trophic conditions and climate on shallow-marine carbonate production during the Aalenian-Oxfordian interval: from the western France platform to the western Tethyan domain. Sediment. Geol. 345, 54-84. https://doi.org/10.1016/j.sedgeo.2016.09.005
  7. Azeredo, A.C., Wright, V.P., Ramalho, M.M., 2002. The Middle-Late Jurassic forced regression and disconformity in central Portugal: eustatic, tectonic and climatic effects on a carbonate ramp system. Sedimentology, 49, 1339-1370. https://doi.org/10.1046/j.1365-3091.2002.00501.x
  8. Dromart, G., Garcia, J.-P., Gaumet, F., Picard, S., Rousseau, M., Atrops, F., Lecuyer, C., Sheppard, S.M.F., 2003. Perturbation of the carbon cycle at the Middle/Late Jurassic transition: geological and geochemical evidence. Am. J. Sci. 303, 667-707. https://doi.org/10.2475/ajs.303.8.667
  9. Lecuyer, C., Picard, S., Garcia, J.-P., Sheppard, S.M.F., Grandjean, P., Dromart, G., 2003. Thermal evolution of Tethyan surface waters during the Middle-Late Jurassic: evidence from ${\delta}18O$ values of marine fish teeth. Paleoceanography, 18, 1076.
  10. Rais, P., Louis-Schmid, B., Bernasconi, S.M., Weissert, H., 2007. Palaeoceanographic and palaeoclimatic reorganization around the Middle- Late Jurassic transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 251, 527-546. https://doi.org/10.1016/j.palaeo.2007.05.008
  11. Pellenard, P., Tramoy, R., Puceat, E., Huret, E., Martinez, M., Bruneau, L., Thierry, J., 2014. Carbon cycle and sea-water palaeotemperature evolution at the Middle-Late Jurassic transition, eastern Paris Basin (France). Mar. Petrol. Geol. 53, 30-43. https://doi.org/10.1016/j.marpetgeo.2013.07.002
  12. Aurell, M., Bosence, D., Waltham, D., 1995. Carbonate ramp depositional systems from a late Jurassic epeiric platform (Iberian Basin, Spain): a combined computer modelling and outcrop analysis. Sedimentology 42, 75-94. https://doi.org/10.1111/j.1365-3091.1995.tb01272.x
  13. Norris, M.S., Hallam, A., 1995. Facies variations across the Middle-Upper Jurassic boundary in Western Europe and the relationship to sea-level changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 116, 189-245. https://doi.org/10.1016/0031-0182(94)00096-Q
  14. Cecca, F., Martin Garin, B., Marchand, D., Lathuiliere, B., Bartolini, A., 2005. Paleoclimatic control of biogeographic and sedimentary events in Tethyan and peri-Tethyan areas during the Oxfordian (Late Jurassic). Palaeogeogr. Palaeoclimatol. Palaeoecol. 222, 10-32. https://doi.org/10.1016/j.palaeo.2005.03.009
  15. Collin, P.-Y., Courville, P., 2006. Sedimentation and palaeogeography of the eastern part of the Paris Basin (France) at the middle-upper Jurassic boundary. Compt. Rendus Geosci. 338, 824-833. https://doi.org/10.1016/j.crte.2006.07.011
  16. Strasser, A., Vedrine, S., Stienne, N., 2012. Rate and synchronicity of environmental changes on a shallow carbonate platform (Late Oxfordian, Swiss Jura Mountains). Sedimentology 59, 185-211. https://doi.org/10.1111/j.1365-3091.2011.01236.x
  17. Leinfelder, R.R., Schmid, D.U., Nose, M., Werner, W., 2002. Jurassic Reef Patterns-the Expression of a Changing Globe.
  18. Lathuiliere, B., Gaillard, C., Habrant, N., Bodeur, Y., Boullier, A., Enay, R., Hanzo, M., Marchand, D., Thierry, J., Werner, W., 2005. Coral zonation of an Oxfordian reef tract in the northern French Jura. Facies 50, 545-559. https://doi.org/10.1007/s10347-004-0035-4
  19. Carpentier, C., Lathuiliere, B., Ferry, S., 2010. Sequential and climatic framework of the growth and demise of a carbonate platform: implications for the peritidal cycles (Late Jurassic, North-eastern France). Sedimentology 57, 985-1020. https://doi.org/10.1111/j.1365-3091.2009.01128.x
  20. Seilacher, A., 1984. Constructional morphology of bivalves : evolutionary pathways in primary versus secondary soft-bottom dwellers. Palaeontology, 27 : 207-237.
  21. Kauffmann, E. G., 1969. function and evolution. In : MOORE, R. C. (ed). Treatise on invertebrate paleontology, pt. N, v. 1, Mollusca 6, Bivalvia : Boulder, Golo., Geological Society of America and University of Kansas Press : N129-N205.
  22. Loosanoff, V. L., 1965. The American or eastern oyster. U.S. Fish and Wildlife Service, Circular 205, 36 p.
  23. Lam, K., Morton, B., 2004. The oysters of Hong Kong (Bivalvia : Ostreidae and Gryphaeidae). The Raffles Bulletin of Zoology, 52(1), 11-28.
  24. Galtsoff, P. S., 1964. The American oyster Crassostrea virginica GMELIN. Fishery Bulletin Unites States Fish Wildlife Service, 64, 1-480.
  25. Morrison, R., Brand, U., 1986. Paleoscene 5 : Geochemistry of Recent marine invertebrates. Geoscience Canada, 13, 237- 254.
  26. Pierce, M.E., Conover, J.T., 1954. A study of the growth of oysters under different ecological conditions in Great Pond. Biological Bulletin (Woods Hole), 107 (2), 318.
  27. Seilacher, A., Meischner, D., 1965. Fazies-analyze im Palaozoikum des Oslo-Gebiets. Geologische Rundschau, 54, 596-619. https://doi.org/10.1007/BF01820746
  28. Grinnell, R.S., 1974. Vertical orientation of some shells on Florida oyster reefs. Journal of Sedimentary Petrology, 41, 116-122.
  29. Raif, W. 1982. Muschelkalk/Keuper bone-beds (Middle Triassic, SW-Germany): storm condensation in a regressive cycle. In : EINSELE, G. & A. SEILACHER (eds). Cyclic and event stratification : 299-325.
  30. Einsele, G., Seilacher, A., 1982. Cyclic and event stratification. Springer Verlag : 536.
  31. Aigner, T. 1982. Event-stratification in nummulite accumulations and in a shell beds from the Eocene of Egypt. In : EINSELE, G. & A. SEILACHER (eds). Cyclic and event stratification, 248-262.
  32. Aigner, T. 1984. Dynamic stratigraphy of epicontinental carbonates, Upper Muschelkalk (M. Triassic), South-German Basin. Neues Jahrbuch fur Geologie und Palaontologie Abhandlungen, 169, 127-159.
  33. Aigner, T. 1985. Storm depositional system. Dynamic stratigraphy in modern ancient shallow marine sequences. Lecture notes in Earth Sciences, 3, 1-174.
  34. Donovan, S.K., 1991. The Processes of Fossilization. Belhaven Press, London, 303.
  35. Brett, C.E., Baird, G.C., 1996. Middle Devonian sedimentary cycles and sequences in the northern Appalachian Basin. Geological Society of America, Special Paper, 306, 213- 241.
  36. Powell, E.N., Staff, G.M., Davies, D.J., Callender, W.R. 1989. Macrobenthic death assemblages in modern marine environments : Formation, interpretation and application : Critical Reviews in Aquatic Sciences. 1, 555-589.
  37. Weiss, I.M., Tuross, N., Addadi, L., Weiner, S., 2002. Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J Exp Zool, 293, 478-491. https://doi.org/10.1002/jez.90004
  38. Auzoux-Bordenave, S., Badou, A., Gaume, B., Berland, S., Helleouet, M.N., Milet, C., Huchette, S. 2010. Ultrastructure, chemistry and mineralogy of the growing shell of the European abalone Haliotis tuberculata. J Struct Biol, 171, 277-290. https://doi.org/10.1016/j.jsb.2010.05.012
  39. Simkiss, K., Wilbur, K.M., 1989. Biomineralization, Cell biology and Mineral Deposition. Academic Press, Inc., New York.
  40. Waller, T.R., 1980. Scanning electron microscopy of shell and mantle in the order Arcoida (Mollusca: Bivalvia). Smithson Contrib Zool, 313, 1-58.
  41. Taylor, J.D., Kennedy, W.J., Hall, A., 1969. The shell structure and mineralogy of the Bivalvia. Introduction. Nuculacea- Trigonacea. Bull Brit Mus (Nat Hist) Zool Lond supplem. 3, 1-125.
  42. Marin, F., Roy, N.L., Marie, B., 2012. The formation and mineralization of mollusk shell, Frontiers in Bioscience, S4, 1099-1125. https://doi.org/10.2741/s321
  43. Chinzei, K., 1995. Adaptive significance of the lightweight shell structure in soft bottom oysters: Neues Jahrbuch fur Geologie und Palaontologie, Abhandlungen, v. 195, p. 217-227.
  44. Higuera-Ruiz, R., Elorza, J., 2009. Biometric, microstructural, and high-resolution trace element studies in Crassostrea gigas of Cantabria (Bay of Biscay, Spain): anthropogenic and seasonal influences: Estuarine, Coastal and Shelf Science, v. 82, p. 201-213. https://doi.org/10.1016/j.ecss.2009.01.001
  45. Macdonald, J., 2011. Microstructure, Crystallography and Stable Isotope Composition of Crassostrea gigas [PhD thesis]: University of Glasgow, U.K., 224 p.
  46. Orton, J.H., Amirthalingam, C., 1927. Notes on shell-depositions in oysters: Marine Biological Association of the UK, Journal, v. 14, p. 935-953. https://doi.org/10.1017/S002531540005116X
  47. Galtsoff, P.S., 1964. "The American oyster Crassostrea virginica (Gmelin)," Fishery Bulletin, vol. 64, pp. 1-48.
  48. Kidwell, S.M., Brenchley, P.J., 1996. Evolution of the fossil record: thickness trends in marine skeletal accumulations and their implications. In: Jablonski, D., Erwin, D. & Lipps, J.H. (eds) Evolutionary Palaeobiology. University of Chicago Press, Chicago, IL, 290-336.
  49. Steuber, T., 2000. Skeletal growth rates of Upper Cretaceous rudist bivalve implications for carbonate production and organism-environment feedbacks. In: Insalaco, E., Skelton, P.W. & Palmer, T.J. (eds) Carbonate Platform Systems: Components and Interactions. Geological Society, London, Special Publications, 178, 21-32.
  50. Loo, L.O., Rosenberg, R., 1983. Mytilus edulis culture: growth and production in western Sweden. Aquaculture, 35, 137-150. https://doi.org/10.1016/0044-8486(83)90081-9
  51. Kirby, M.X., Soniat, T.M., Spero, H.J., 1998. Stable isotope sclerochronology of Pleistocene and recent oyster shells (Crassostrea virginica). Palaios, 13, 560-569. https://doi.org/10.2307/3515347
  52. Bosence, D., 1989. Biogenic carbonate production in Florida Bay. Bulletin of Marine Science, 44, 419-433.
  53. Moore, H.B., 1972. Carbonate production on seaquarium flats. Marine Biology, 17, 120-132.
  54. Harney, J.N., Fletcher, C.H., 2003. A budget of carbonate framework and sediment production, Kailua Bay, Hawaii. Journal of Sedimentary Research, 73, 856-868. https://doi.org/10.1306/051503730856
  55. Richard, G., 1985. Richness of the great sessile bivalves in Takapoto Lagoon. In: Salvat, B. & Richard, G. (eds) Atol de Takapoto, Archipel des Tuamotu. Field Trip, 5th Congre's International, Recifs Corallines, Tahiti, Polynesie Francaise. International Association for Biological Oceanography, 1, 368-371.
  56. Smith, S.V., 1972. Production of calcium carbonate on the mainland shelf of southern California. Limnology and Oceanography, 17, 28-41. https://doi.org/10.4319/lo.1972.17.1.0028
  57. Beukema, J.J., 1980. Calcimass and carbonate production by molluscs on the tidal flats in the Dutch Wadden Sea: I. The tellinid bivalve Macoma balthica. Netherlands Journal of Sea Research, 14, 323-338. https://doi.org/10.1016/0077-7579(80)90006-X
  58. Esteban, M., 1979. Significance of the Upper Miocene coral reefs of the Western Mediterranean: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 29, p. 169-188. https://doi.org/10.1016/0031-0182(79)90080-4
  59. Martin, J.M., Braga, J.C., Rivas, P., 1989. Coral successions in Upper Tortonian reefs in SE Spain: Lethaia, v. 22, p. 271-286. https://doi.org/10.1111/j.1502-3931.1989.tb01342.x
  60. Riding, R., Martin, J.M., Braga, J.C., 1991. Coral stromatolite reef framework, Upper Miocene, Almeria, Spain: Sedimentology, v. 38, p. 799-818. https://doi.org/10.1111/j.1365-3091.1991.tb01873.x
  61. Esteban, M., Braga, J.C., Martin, J., De-Santisteban, C., 1996. Western Mediterranean reef complexes, in Franseen, E.K., Esteban, M., Ward, W.C., and Rouchy, J.-M., eds., Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Regions: SEPM, Concepts in Sedimentology and Paleontology. 5, p. 55-72.
  62. Pomar. L., Hallock, P., 2007. Changes in coral-reef structure through the Miocene in the Mediterranean province: adaptive versus environmental influence: Geology, v. 35, p. 899-902. https://doi.org/10.1130/G24034A.1
  63. Bosellini, F.R., Perrin, C., 2008. Estimating Mediterranean Oligocene-Miocene seasurface temperatures: an approach based on coral taxonomic richness: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 258, p. 71-88. https://doi.org/10.1016/j.palaeo.2007.10.028
  64. Perrin, C., Bosellini, F.R., 2012. Paleobiology of scleractinian reef corals: changing patterns during the Oligocene-Miocene climatic transition in the Mediterranean: Earth- Science Reviews, v. 111, p. 1-24. https://doi.org/10.1016/j.earscirev.2011.12.007
  65. Mertz-Kraus, R., Brachert, T.C., Reuter, M., Galer, S.J.G., Fassoulas, C., Iliopoulos, G., 2009. Late Miocene sea surface salinity variability and paleoclimate conditions in the Eastern Mediterranean inferred from coral aragonite d18O: Chemical Geology, v. 262, p. 202-216. https://doi.org/10.1016/j.chemgeo.2009.01.010
  66. Hecker, R.F., (Gekker, R.F.), Osipova, A.I., Belskaya, T.N. (Belska, T.N.)., 1962. Fergana Gulf of Paleogene Sea of Central Asia, Its history, Sediments, Fauna and Flora, Their Environment and Evolution [in Russian]. Part2. 332pp. Izdatel'stvo Akademii Nauk SSSR, Moskva.
  67. Hudson, J.D., Palmer, T.J., 1976. A euryhaline oyster from the middle Jurassic and the ongin of the true oysters. - Palaeontology 19, 79-93.
  68. Flaff, C.D., 1976. Origin and significance of the oyster banks in the Walnut Clay Formation, central Texas. Baylor Geological Studies. 30,147.
  69. Seilacher, A., 1984. Constructional morphology of bivalves: evolutionary pathways in primary versus secondary soft-bottom dwellers. Palaeontology, 27, 207 -237.
  70. Littlewood, T.J., Donovan, S.K., 1988. Variation of Recent and fossil Crassostrea in Jamaica. Palaeontology, 31, 1013-1028.
  71. Kidwell, M., 1990. Phanerozoic evolution of macroinvenebrate shell accumulations: preliminary data from the Jurassic of Bntain. In: W. Miller, III (ed.), Paleocommun E Temporal Dynamics: The Long-term Development of Multispecies Assemblages. The Paleontological SocieE Special Publication, 5,309-317.
  72. Jimenez, A.P., Braga, J.C., Martin, J.M., 1991. Oyster distribution in the upper Tortonian of the Almanzora Corridor (Almeria, S.E. Spain). Geobios 24,725-734. https://doi.org/10.1016/S0016-6995(06)80300-1
  73. Demarcq, H., Demarcq, G., 1999. Le biostrome d Crassostrea gasar (Bivalvia) de l'holocBne du Sine-Saloum (Sonogal); donnoes nouvelles et interprotationo co stratig raphique.- Geobios 25, 225-250.
  74. Seilacher, A., 1985. Bivalve Morphology and Function. In: T.W. Broadhead (ed.), Mollusks, Notes for a Short Course. - UniversiE of Tennessee Studies in Geology 1.3' 88-101.
  75. Seilacher, A., 1989. Oyster Beds; Biological and Taphonomic Response to Storm-Dominated Regimes. Abstracts, 28th Intemational Geological Congress, 70. Washington, D.C.
  76. Fiirsich, F.T., Oschmann, W., 1986a. Storm shell beds of Nanogyravirgulain the upper Jurassic of France. Neues J ahrbuchfiir Geologie and Paltiontolo gie, Abhandlung en T 2, 141-161.
  77. Fiirsich, F.T., Oschmann, W., 1986b. Autecology of the Upper Jurassic oyster Nanogyra virgula (Defrance). - Paliionto Io gis che Ze it s chrirt, 60, 65-74.
  78. Machalski, M., 1989. Life position of the oyster Deltoideum delta (Smith) from the Kimmeridgian of Poland, and its environmental significance. - Neues Jahrbuchfiir Geologie and Palciontologie, Monatshefte, 1, 603-614.
  79. Brett, C.E., 1995. Sequence sffatigraphy, biostratigraphy, and taphonomy in shallow marine environments. Palaiost, 597-616.
  80. Sanders, D., 2004. Potential significance of syndepositional carbonate dissolution for platform banktop aggradation and sediment texture: a graphic modelling approach. Austrian Journal of Earth Sciences, 95-96, 71-79.
  81. Bohm, F., Westphal, H., Bornholdt, S., 2003. Required but disguised: environmental signals in limestone-marl alternations. Palaeogeography, Palaeoclimatology, Palaeoecology, 189, 161-178. https://doi.org/10.1016/S0031-0182(02)00639-9
  82. Munnecke, A., Samtleben, C., 1996. The formation of micritic limestones and the development of limestone-marl alternations in the Silurian of Gotland, Sweden. Facies, 34, 159-176. https://doi.org/10.1007/BF02546162
  83. Wheeley, J.R. 2006. Taphonomy, sedimentology and palaeoenvironmental interpretation of Middle Ordovician Limestones, Jamtland, Sweden. PhD thesis, Cardiff University.