DOI QR코드

DOI QR Code

The Study on Reduction of Hazardous Materials using Eco-friendly Charcoal Composite Sheet

친환경 활성탄 복합시트의 유해물질 저감 연구

  • Choi, Il-Hong (Institute of Radiation Fusion Technology, International University of Korea) ;
  • Kang, Sang-Sik (Institute of Radiation Fusion Technology, International University of Korea) ;
  • Lee, Su-Min (Department of Radiological Science, International University of Korea) ;
  • Yang, Seung-Woo (Department of Radiological Science, International University of Korea) ;
  • Kim, Kyo-Tae (Software Education Institute, Inje University) ;
  • Park, Ji-Koon (Institute of Radiation Fusion Technology, International University of Korea)
  • 최일홍 (한국국제대학교 방사선융합기술연구소) ;
  • 강상식 (한국국제대학교 방사선융합기술연구소) ;
  • 이수민 (한국국제대학교 방사선학과) ;
  • 양승우 (한국국제대학교 방사선학과) ;
  • 김교태 (인제대학교 소프트웨어교육원) ;
  • 박지군 (한국국제대학교 방사선융합기술연구소)
  • Received : 2018.09.28
  • Accepted : 2018.10.31
  • Published : 2018.10.31

Abstract

Recently, various environmentally friendly products have been developed for improving the indoor air quality while pursuing a well-being nature-friendly healthy life as a core value. In this research, we not only solve the problems of existing environmentally friendly paints, but also developed a charcoal composite seats that can reduce radon, which is a natural radioactive substance, and evaluated the reduction effect of radon, formaldehyde and volatile organic compounds. In the charcoal composite seats, a sodium silicate emulsion and charcoal were mixed to prepare an charcoal liquid coating material, and the composite seats was fabricated by air-spray coating method. In order to analyze the hazardous substance reduction performance of the fabricated charcoal composite seats, radon was designed to comply with the Ministry of the Environment standard, formaldehyde and volatile organic compounds were designed to comply with KCL-FIR-1085 standard. As a result of the experiment, the fabricated charcoal composite seats was evaluated as having a radon reduction capability of about 90.8% from 20 hours, formaldehyde and volatile organic compounds were 3 hours, and the reduction capability of 96.7% and 96.6% was found respectively. It is considered that these results can be utilized as basic data at the time of product development for improvement of indoor air quality.

최근 웰빙이라는 자연친화적인 건강한 삶을 핵심 가치로 추구하면서 실내 공기질의 개선을 위한 다양한 친환경 제품이 개발되고 있다. 본 연구에서는 기존 친환경 도료의 문제점을 해결할 뿐만 아니라 천연방사성 물질인 라돈 저감이 가능한 활성탄 복합 시트를 개발하고 라돈, HCHO, VOCs에 대한 저감 효과를 평가하였다. 활성탄 복합 시트는 규산나트륨 에멀젼과 활성탄을 혼합하여 활성탄 액상 도료를 제조하고 에어스프레이 공법을 통하여 복합 시트로 제작하였다. 제작된 활성탄 복합 시트에 대한 유해물질 저감 성능을 분석하기 위해 라돈은 환경부 고시, HCHO 및 VOCs는 KCL-FIR-1085 기준에 부합하도록 설계하였다. 실험결과, 제작된 활성탄 복합 시트는 20시간에서 약 90.8%의 라돈 저감 효율을 가지는 것으로 평가되었고, HCHO 및 VOCs는 3시간에서 각 96.7%, 96.6%의 저감 효율이 나타났다. 이러한 결과는 실내 공기 질 개선을 위한 제품 개발 시 기초 자료로서 활용할 수 있을 것으로 사료된다.

Keywords

References

  1. H. C. Park, H. S. Choi, S. Y. Cho and S. H. Kim, "Numerical Study on Indoor Dispersion of Radon Emitted from Building Materials," Journal of Korean Society of Environmental Engineers, Vol. 36, No. 5, pp. 325-332, 2014. https://doi.org/10.4491/KSEE.2014.36.5.325
  2. ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4).
  3. J. H. Kim, S. H. Hyun, C. W. Lee and Y. M. Hahm, "A study on the Explosion Riskiness with Flying of Activated Carbon," Fire Science and Engineering, Vol. 12, No. 3, pp. 3-9, 1998.
  4. S. Z. LU, "Discussion of the Indoor Chemical Pollution and the Purification Method", Liaoning Chemical Industry, Vol. 32, No. 5, pp. 204-206, 2003. https://doi.org/10.3969/j.issn.1004-0935.2003.05.008
  5. L. P. Hu, K. L. Mo, L. Yang and B. Zhang, "Research on Activated Carbon to Adsorption of formaldehyde", Journal of Sichuan Forestry Science and Technology, Vol. 28, No. 4, pp. 53-55, 2017.
  6. Q. Ye and J. Domnick, "Analysis of droplet impingement of different atomizers used in spray coating processes", Journal of Coatings Technology and Research, Vol. 14, No. 2, pp. 467-476, 2017. https://doi.org/10.1007/s11998-016-9867-4
  7. Y. H. Sun, "The pollutants removal and disinfection of secondary effluent from sewage treatment plant in loop reactor using silver nanoparticles coated on activated carbon," Journal of the Korean Society of Water and Wastewater, Vol. 30, No. 4, pp. 361-367, 2016. https://doi.org/10.11001/jksww.2016.30.4.361
  8. Y. Lee, S. H. Lee, I. S. Kyeng and S. S. Lee, "Reduction Properties of Environment-friendly Mortar for Indoor Air Contaminant Using Phytoncide and Palm Active Carbon," Journal of the Architectural Institute of Korea Structure & Construction, Vol. 32, No. 6, pp. 27-34, 2016. https://doi.org/10.5659/JAIK_SC.2016.32.6.27
  9. D. W. Cha, S. Y. Cho and S. H. Kim, "Radon reduction efficiency of the air cleaner equipped with a Korea carbon filter," Journal of Odor and Indoor Environment, Vol. 16, No. 4, pp. 364-368, 2017. https://doi.org/10.15250/joie.2017.16.4.364
  10. I. H. Choi, S. S. Kang, J. H. Jun, S. W. Yang and J. K. Park, "A Study of Radon Reduction using Panel-type Activated Carbon," Journal of Korean Society of Radiology, Vol. 11, No. 5, pp. 297-302. 2017. https://doi.org/10.7742/JKSR.2017.11.5.297