DOI QR코드

DOI QR Code

Correlation between rare earth elements in the chemical interactions of HT9 cladding

  • Lee, Eun Byul (SFR Nuclear Fuel Development Division, Korea Atomic Energy Research Institute) ;
  • Lee, Byoung Oon (SFR Nuclear Fuel Development Division, Korea Atomic Energy Research Institute) ;
  • Shim, Woo-Yong (Materials Science & Engineering, Yonsei University) ;
  • Kim, Jun Hwan (SFR Nuclear Fuel Development Division, Korea Atomic Energy Research Institute)
  • 투고 : 2018.02.13
  • 심사 : 2018.04.23
  • 발행 : 2018.08.25

초록

Metallic fuel has been considered for sodium-cooled fast reactors because it can maximize the uranium resources. It generates rare earth elements as fission products, where it is reported by aggravating the fuel-cladding chemical interaction at the operating temperature. Rare earth elements form a multicomponent alloy (Ce-Nd-Pr-La-Sm-etc.) during reactor operation, where it shows a higher reaction thickness than a single element. Experiments have been carried out by simplifying multicomponent alloys for mono or binary systems because complex alloys have difficulty in the analysis. In previous experiments, xCe-yNd was fabricated with two elements, Ce and Nd, which have a major effect on the fuel-cladding chemical interaction, and the thickness of the reaction layer reached maximum when the rare earth elements ratio was 1:1. The objective of this study is to evaluate the effect and relationship of rare earth elements on such synergistic behavior. Single and binary rare earth model alloys were prepared by selecting five rare earth elements (Ce, Nd, Pr, La, and Sm). In the single system, Nd and Pr behaviors were close to diffusion, and Ce showed a eutectic reaction. In the binary system, Ce and Sm further increased the reaction layer, and La showed a non-synergy effect.

키워드

참고문헌

  1. J.H. Kim, J.H. Baek, B.O. Lee, C.B. Lee, Y.S. Yoon, Kor. J. Met. Mater. 48 (2010) 691-694.
  2. J.G. Kim, S.J. Lee, S.B. Park, S.C. Hwang, H.S. Lee, Procedia Chem. 7 (2012) 754-757. https://doi.org/10.1016/j.proche.2012.10.114
  3. H.M. Heo, S.G. Park, J.H. Kim, S.H. Kim, M.Y. Heo, Kor. J. Met. Mater. 53 (2015) 177-178. https://doi.org/10.3365/KJMM.2014.53.3.177
  4. E.H. Jeong, S.G. Park, S.H. Kim, Y.D. Kim, J. Nucl. Mater. 467 (2015) 527. https://doi.org/10.1016/j.jnucmat.2015.09.026
  5. C. Metthews, C. Unal, J. Galloway, D.D. Keiser, S.L. Hayes, Nucl. Technol. 198 (2017) 231-259. https://doi.org/10.1080/00295450.2017.1323535
  6. R.D. Mariani, D.L. Porter, T.P. O'Holleran, S.L. Hayes, J.R. Kennedy, J. Nucl. Mater. 419 (2011) 263-267. https://doi.org/10.1016/j.jnucmat.2011.08.036
  7. P.C. Tortorici, M.A. Dayananda, J. Nucl. Mater. 204 (1993) 165. https://doi.org/10.1016/0022-3115(93)90213-I
  8. J.H. Kim, J.H. Baek, B.O. Lee, C.B. Lee, Y.S. Yoon, Met. Mater. Int. 17 (4) (2011) 535-540. https://doi.org/10.1007/s12540-011-0801-0
  9. K. Inagaki, T. Ogata, J. Nucl. Mater. 441 (2013) 574-578. https://doi.org/10.1016/j.jnucmat.2013.04.046
  10. D.D. Keiser, Scripta Metall. Mater. 133 (1995) 959.
  11. J.H. Kim, J.S. Cheon, B.O. Lee, J.H. Kim, J. Nucl. Mater. 479 (2016) 394-400. https://doi.org/10.1016/j.jnucmat.2016.07.040
  12. K. Nakamura, T. Ogata, M. Kurata, A. Itoh, M. Akabori, J. Nucl. Mater. 275 (1999) 246. https://doi.org/10.1016/S0022-3115(99)00227-5
  13. T. Ogata, M. Akabori, A. Itoh, T. Ogawa, J. Nucl. Mater. 232 (1996) 125-130. https://doi.org/10.1016/S0022-3115(96)00409-6
  14. A. Laik, K. Bhanumurthy, G.B. Kale, J. Nucl. Mater. 305 (2002) 124-133. https://doi.org/10.1016/S0022-3115(02)01028-0
  15. William D. Callister Jr., David G. Rethwisch, Material Science and Engineering an Introduction, eighth ed., Wiley, 1999, pp. 123-133.
  16. T. Ogata, M. Akabori, A. Itoh, Mater. Trans. 44 (2003) 47- 52. https://doi.org/10.2320/matertrans.44.47

피인용 문헌

  1. Lanthanide migration and immobilization in metallic fuels vol.109, pp.None, 2018, https://doi.org/10.1016/j.pnucene.2018.08.019
  2. Diffusion behaviors between metallic fuel alloys with Pd addition and Fe vol.525, pp.None, 2018, https://doi.org/10.1016/j.jnucmat.2019.07.028
  3. Postirradiation characterization of palladium as an additive for fuel cladding chemical interaction mitigation in metallic fuel vol.558, pp.None, 2018, https://doi.org/10.1016/j.jnucmat.2021.153403
  4. Synthesis of plasma-nitrided Cr coatings on HT9 steel for advanced chemical barrier property in a nuclear cladding application vol.579, pp.None, 2018, https://doi.org/10.1016/j.apsusc.2021.152133