DOI QR코드

DOI QR Code

Analysis of Sugars Content by Genotypes in 82 Radish (Raphanus sativus L.)

무 유전자원 82 계통의 유리당 함량 분석

  • Seo, Mi-Suk (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Chung, Joon-Hui (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Park, Beom-Suk (Hongik Bio Corporation) ;
  • Kim, Jung Sun (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration)
  • 서미숙 (국립농업과학원 농업생명자원부) ;
  • 정준휘 (국립농업과학원 농업생명자원부) ;
  • 박범석 (홍익바이오(주)) ;
  • 김정선 (국립농업과학원 농업생명자원부)
  • Received : 2018.05.17
  • Accepted : 2018.06.21
  • Published : 2018.10.31

Abstract

Radish (Raphanus sativus L.) is a species of the Brassicaceae family and an important root vegetable crop, produced worldwide. A total of 82 radish accessions with various morphological and physiological characteristics analyzed for total sugars content. These accessions includes five subspecies and classified as wild, wild-relative, traditional and improved cultivar. The four sugars, glucose, fructose, sucrose and maltose, showed various contents in 82 accessions. Total sugar content ranged from 5.64 to 46.68 mg/g and showed average 25.33 mg/g. Total sugar content was not statistically significant among the five subspecies, but individual sugar ratio varied. The wild, wild-relatives and traditional cultivars were not significantly among average total sugars content compared with improved cultivars. On the other hand, the wild and traditional cultivars were showed high ratio of individual sugars. These results could be valuable information for the development of new radish cultivars and regulation of sugars biosynthesis in radish.

십자화과 식물에 속하는 무는 전세계적으로 재배되는 중요한 뿌리 채소작물이다. 본 연구에서는 다양한 형질을 가진 무 유전자원 82 계통을 대상으로 총 유리당 함량을 분석하였다. 일본, 독일, 그리고 한국에서 보유중인 82 계통의 유전자원은 크게5 아종을 포함하고 있으며, 야생형, 야생 근연종, 재래종 그리고 육성품종으로 구분된다. 포도당, 과당, 자당 그리고 엿당을 분석하여 총 유리당 함량을 측정한 결과, 평균 25.33 mg/g, 5.64-46.68 mg/g의 분포도를 나타내어 계통에 따라 총 유리당 함량에 차이를 확인할 수 있었다. 또한 총 유리당 함량에 대하여 포도당이 56.92%로 가장 높은 유리당 함유율을 보였고, 과당(31.34%), 자당(10.46%), 그리고 엿당(2.25%)의 순으로 높은 함유 율을 보였다. 5 아종에서 유전형에 따른 총 유리당 함량의 차이는 관찰되지 않았으나, 아종에 따른 유리당 함유 율의 차이는 확인할 수 있었다. 또한 야생종과 야생 근연종 그리고 재래종 무는 육성 품종과 비교하여 평균 총 유리당 함량에서는 큰 차이를 보이지 않았으나, 당의 종류별 함유 율을 비교한 결과 야생종과 재래종에서 높은 함유 율을 확인할 수 있었다. 본 실험의 결과는 후속 연구를 통한 고품질 무의 개발 및 무의 유리당 생합성 관련 연구를 위한 기초정보를 제공할 수 있을 것이다.

Keywords

References

  1. Dobrenel, T., C. Marchive, M. Azzopardi, G. Clement, M. Moreau, R. Sormani, C. Robaglia and C. Meyer. 2013. Sugar metabolism and the plant target of rapamycin kinase: a sweet operator. Frontiers in Plant Sci. 4:93.
  2. Ellstrand, N. and D. Marshall. 1985. The impact of domestication on distribution of allozyme variation within and among cultivars of radish, Raphanus sativus L. Theor Appl Genet. 69:393-398. https://doi.org/10.1007/BF00570908
  3. Giusti, M.M., L.E. Rodriguez-saona, J.R. Baggett, G.L. Reed, R.W. Durst and R.E. Wrolstad. 1998. Anthocyanin pigment composition of red radish cultivars as potential food colorants. J Food Sci. 63:219-224.
  4. Glendinning, J.I., L. Breinager, E. Kyrillou, K. Lacuna, R. Rocha and A. Sclafani. 2010. Differential effects of sucrose and fructose on dietary obesity in four mouse strains. Physiol Behav. 101:331-343. https://doi.org/10.1016/j.physbeh.2010.06.003
  5. Hara, M., K. Oki, K. Hoshino and T. Kuboi. 2003. Enhancement of anthocyanin biosynthesis by sugar in radish (Raphanus sativus L.) hypocotyl. Plant Sci. 164:259-265. https://doi.org/10.1016/S0168-9452(02)00408-9
  6. Hara, M., D. Torazawa, T. Asai and I. Takahashi. 2011. Variations in the soluble sugar and organic acid contents in radish (Raphanus sativus L.) cultivars. Food Sci Technol. 46:2387-2392.
  7. Hashida, T., R. Nakatsuji, H. Budahn, O. Schrader, H. Peterka, T. Fujimura, N. Kubo and M. Hirai. 2013. Construction of a chromosome-assigned, sequence-tagged linkage map for the radish, Raphanus sativus L. and QTL analysis of morphological traits. Breeding Sci. 63:218-226. https://doi.org/10.1270/jsbbs.63.218
  8. Irwin, R.E. and S.Y. Strauss. 2005 Flower color microevolution in wild radish: evolutionary response to pollinator-mediated selection. Am Nat. 165:225-237.
  9. Jeong, Y.M., N. Kim, B.O. Ahn, M. Oh, W.H. Chung, H. Chung, S. Jeong, K.B. Lim, Y.J. Hwang and G.B. Kim. 2016. Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes. Theor Appl Genet. 129:1357-1372. https://doi.org/10.1007/s00122-016-2708-0
  10. Kim, B.M., K.M. Lee and I.C. Jung. 2017. Changes in anthocyanin content of aronia (Aronia melancocarpa) by processing conditions. Korean J. Plant Res. 30:152-159. https://doi.org/10.7732/kjpr.2017.30.2.152
  11. Kim, N.S., Y.M. Jeong, S.M. Jeong, G.B. Kim, S.H. Baek, Y.E. Kwon, A. Cho, S.B. Choi, J.W. Kim, W.J. Lim, K.H. Kim, W. Park, J. Kim, J.H. Kim, B. Yim, Y.J. Lee, B.M. Chun, Y.P. Lee, B.S. Park, H.J. Yu and J.H. Mun. 2016. Identification of candidate domestication regions in the radish genome based on high-depth resequencing analysis of 17 genotypes. Theor Appl Genet. 129:1797-1814. https://doi.org/10.1007/s00122-016-2741-z
  12. Kitashiba, H., F. Li, H. Hirakawa, T. Kawanabe, Z. Zou, Y. Hasegawa, K. Tonosaki, S. Shirasawa, A. Fukushima and S. Yokoi. 2014. Draft sequences of the radish (Raphanus sativus L.) genome. DNA Research 21:481-490. https://doi.org/10.1093/dnares/dsu014
  13. Ko, H.C., J.S. Sung, O.S. Hur, H.J. Baek, Y.A. Jeon, B.P. Luitel, K.Y. Ryu, J.B. Kim and J.H. Rhee. 2017. Comparison of glucosinolate contents in leaves and roots of radish (Raphanus spp.). Korean J. Plant Res. 30:579-589.
  14. Koch, K. 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol. 7:235-246. https://doi.org/10.1016/j.pbi.2004.03.014
  15. Koster, K.L. and A.C. Leopold. 1988. Sugars and desiccation tolerance in seeds. Plant Physiol. 96:302-304.
  16. Kwak, J.Y., S.H. Kim, K.H. Seong, M.J. Yoo, K.B. Park, Y.P. Lim and J.T. Park. 2017. Relationship between major components and physicochemical properties of radish (Raphanus sativus L.) combinations for developing new cultivars targeting Chinese market. Korean J Horti Sci Technol. 10:577-587.
  17. Lee, W.Y., W.S. Cha, S.L. Oh, Y.J. Cho, H.Y. Lee, B.S. Lee, J.S. Park and J.H. Park. 2006. Quality characteristics of dried radish (Raphanus sativus L.) by drying methods. Korean J. Food Preserv. 13:37-42.
  18. Lu, Y. and T.D. Sharkey. 2006. The importance of maltose in transitory starch breakdown. Plant Cell Environ. 29:353-366. https://doi.org/10.1111/j.1365-3040.2005.01480.x
  19. Mahawanich, T. and Schmidt S.J. 2004. Molecular mobility and the perceived sweetness of sucrose, fructose, and glucose solutions. Food Chemistry 84:169-179. https://doi.org/10.1016/S0308-8146(03)00197-3
  20. Moghe, G.D., D.E. Hufnagel, H. Tang, Y. Xiao, I. Dworkin, C.D. Town, J.K. Conner and S.H. Shiu. 2014. Consequences of whole-genome triplication as revealed by comparative genomic analyses of the wild radish (Raphanus raphanistrum) and three other Brassicaceae species. The Plant Cell 26:1925-1937. https://doi.org/10.1105/tpc.114.124297
  21. Mitsui, Y., M. Shimomura, K. Komatsu, N. Namiki, M. Shibata-Hatta, M. Imai, Y. Katayose, Y. Mukai, H. Kanamori and K. Kurita. 2015. The radish genome and comprehensive gene expression profile of tuberous root formation and development. Scientific Reports 5:10835. https://doi.org/10.1038/srep10835
  22. Mun, J.H., H. Chung, W.H. Chung, M.J. Oh, Y.M. Jeong, N.S. Kim, B.O. Ahn, B.S. Park, S.Y. Park, K.B. Lim, Y.J. Hwang and H.J. Yu. 2015. Construction of a reference genetic map of Raphanus sativus based on genotyping by whole-genome resequencing. Theor Appl Genet. 128:259-272. https://doi.org/10.1007/s00122-014-2426-4
  23. Murtaza, I., G.M. Beigh, T.A. Shah, A. Hussain, A.A. Khan and C. Kaur. 2005. Antioxidant activity and total phenolic content of kale genotypes grown in Kashmir vally. J. Plant Biochem Biot. 14:215-217. https://doi.org/10.1007/BF03263250
  24. Pilon-Smits, E.A.H., M.J.M. Ebskamp, M.J. Paul, M.J.W. Jeuken, P.J. Weisbeek and S.C.M. Smeekens. 1995. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol. 107:125-130. https://doi.org/10.1104/pp.107.1.125
  25. Seo, M.S., M. Jin, S.H. Sohn and J.S. Kim. 2017. Expression profiles of BrMYB transcription factors related to glucosinolate biosynthesis and stress response in eight subspecies of Brassica rapa. FEBS Open Bio 7:1646-1659. https://doi.org/10.1002/2211-5463.12231
  26. Xiaohui, Z., Y. Zen, M. Shiyong, Q. Yang, Y. Xinhua, C. Xiaohua, C. Feng, W. Zhangyan, S. Yuyan and J. Yi. 2015. A de novo genome of a Chinese radish cultivar. Horti Plant J. 1:155-164.
  27. Yi, G., S. Lim, W.B. Chae, J.E. Park, H.R. Park, E.J. Lee and J.H. Huh. 2016. Root glucosinolate profiles for screening of radish (Raphanus sativus L.) genetic resources. J Agric Food Chem. 13(64):61-70.
  28. Zamora, M.C., F.M. Buratti and M.E. Otero-Losada. 1998. Temporal study of sucrose and fructose relative sweetness. J Sensory Studies 13:213-228. https://doi.org/10.1111/j.1745-459X.1998.tb00084.x

Cited by

  1. Analysis of Phenotypic Characteristics and Sucrose Metabolism in the Roots of Raphanus sativus L. vol.12, pp.None, 2021, https://doi.org/10.3389/fpls.2021.716782