DOI QR코드

DOI QR Code

Novel Method for Circulating Current Suppression in MMCs Based on Multiple Quasi-PR Controller

  • Qiu, Jian (School of Automation, Hangzhou Dianzi University) ;
  • Hang, Lijun (School of Automation, Hangzhou Dianzi University) ;
  • Liu, Dongliang (School of Automation, Hangzhou Dianzi University) ;
  • Geng, Shengbao (Jinan Power Supply Bureau) ;
  • Ma, Xiaonan (School of Automation, Hangzhou Dianzi University) ;
  • Li, Zhen (School of Automation, Hangzhou Dianzi University)
  • 투고 : 2017.07.17
  • 심사 : 2018.08.16
  • 발행 : 2018.11.20

초록

An improved circulating current suppression control method is proposed in this paper. In the proposed controller, an outer loop of the average capacitor voltage control model is used to balance the sub-module capacitor voltage. Meanwhile, an individual voltage balance controller and an arm voltage balance controller are also used. The DC and harmonic components of the circulating current are separated using a low pass filter. Therefore, a multiple quasi-proportional-resonant (multi-quasi-PR) controller is introduced in the inner loop to eliminate the circulating harmonic current, which mainly contains second-order harmonic but also contains other high-order harmonics. In addition, the parameters of the multi-quasi-PR controller are designed in the discrete domain and an analysis of the stability characteristic is given in this paper. In addition, a simulation model of a three-phase MMC system is built in order to confirm the correctness and superiority of the proposed controller. Finally, experiment results are presented and compared. These results illustrate that the improved control method has good performance in suppressing circulating harmonic current and in balancing the capacitor voltage.

키워드

참고문헌

  1. J. Kucka, D. Karwatzki, L. Baruschka, and A. Mertens, “Modular multilevel converter with magnetically coupled branch inductors,” IEEE Trans. Power Electron., Vol. 32, No. 9, pp. 6767-6777, Sep. 2017. https://doi.org/10.1109/TPEL.2016.2627882
  2. P. T. Lewis, B. M. Grainger, H. A. AI Hassan, A. Barchowsky, and G. F. Reed, “Fault section identification protection algorithm for modular multilevel converterbased high voltage DC with a hybrid transmission corridor,” IEEE Trans. Ind. Electron., Vol. 63, No. 9, pp. 5652-5662, Sep. 2016. https://doi.org/10.1109/TIE.2016.2582458
  3. J. Rodriguez, J.-S Lai, and Z. Fang, “Multilevel inverters: a survey of topologies, controls, and applications,” IEEE Trans. Ind. Electron., Vol. 49, No. 4, pp. 724-738, Aug. 2002. https://doi.org/10.1109/TIE.2002.801052
  4. S. Debnath, J. Qin, B. Bahrani, and M. Saeedifard. "Operation, control, and applications of the modular multilevel converter: A review," IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 37-53, Jan. 2015. https://doi.org/10.1109/TPEL.2014.2309937
  5. L. Harnefors, A. Antonopoulos, S. Norrga, and L. Angquist, “Dynamic analysis of modular multilevel converters,” IEEE Trans. Ind. Electron., Vol. 60, No. 7, pp. 2526-2537, Jul. 2013. https://doi.org/10.1109/TIE.2012.2194974
  6. D. Siemaszko, A. Antonopoulos, K. V, M. Vasiladiotis, L. Angquist, and H.-P. Lennart, "Evaluation of control and modulation methods for modular multilevel converters," in Proc. Int. Power Electro. Conf., pp. 746-753, Jun. 2010.
  7. M. Espinoza, R. Cardenas, M. Diaz, and J. C. Clare, "An enhanced dq-based vector control system for modular multilevel converters feeding variable-speed drives," IEEE Trans. Ind. Election., Vol. 64, No. 4, pp. 2620-2630, Apr. 2017. https://doi.org/10.1109/TIE.2016.2637894
  8. A. Legnica and R. Marquardt, "An innovative modular multilevel converter topology suitable for a wide power range," Power Tech. Conf. Proc., pp. 23-26, Jun. 2003.
  9. D. Siemaszko, A. Antonopoulos, K. Ilves, M. Vasiladiotis, L. Angquist, and H.-P. Nee, "Evaluation of control and modulation methods for modular multilevel converters," Int. Power Elec. Conf., pp. 21-24, Jun. 2010.
  10. H. Liu, L. Poh, and F. Blaabjerg, "Generalized modular multilevel converter and modulation," Int. Power Elec. Conf., pp. 2034-2038, May. 2014.
  11. I. A. Gowaid, G. P. Adam, S. Ahmed, D. Holliday, and B.W. Williams, “Analysis and design of a modular multilevel converter with trapezoidal modulation for medium and high voltage DC-DC transformers,” IEEE Trans. Power Electron., Vol. 20, No. 10, pp. 5439-5457, May 2015.
  12. A. Nami, J. Liang, F. Dijkhuizen, and G. D. Demetriades, “Modular multilevel converters for HVDC applications: Review on converter cells and functionalities,” IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 18-36, Jan. 2015. https://doi.org/10.1109/TPEL.2014.2327641
  13. B. Li, S. Zhou, D. Xu, R. Yang, D. Xu, C. Buccella, and C. Cecati, “An improved circulating current injection method for modular multilevel converters in variable-speed drives,” IEEE Trans. Ind. Electron., Vol. 63, No. 11, pp. 7215-7225, Mar. 2016. https://doi.org/10.1109/TIE.2016.2547899
  14. F. Hahn, M. Andresen, G. Buticchi, and M. Liserre, “Thermal analysis and balancing for modular multilevel converters in HVDC applications,” IEEE Trans. Power Electron., Vol. 33, No. 3, pp. 1985-1996, Mar. 2018. https://doi.org/10.1109/TPEL.2017.2691012
  15. Y. Tang, L. Ran, O. Alatise, and P. Mawby, “Capacitor selection for modular multilevel converter,” IEEE Trans. Ind. Appl., Vol. 52, No. 4, pp. 3279-3293, Jul./Aug. 2016. https://doi.org/10.1109/TIA.2016.2533620
  16. M. Moranchel, E. J. Bueno, F. J. Rodriguez, and I. Sanz, "Novel capacitor voltage balancing algorithm for modular multilevel converter," Ann. Conf. Ind. Electron. Society, pp. 4697-4701, Oct. 2014.
  17. S. Rohner, S. Bernet, M. Hiller, and R. Sommer, “Modulation, losses and semiconductor requirement of modular multilevel converters,” IEEE Trans. Ind. Electron., Vol. 57, No. 8, pp. 2633-2642, Aug. 2010. https://doi.org/10.1109/TIE.2009.2031187
  18. Q. Tu, Z. Xu, H. Huang, and J. Zhang, "Parameters design principles of the arm inductor in modular multilevel converter based HVDC," Proc. Int. Conf. Power Syst. Technol., pp. 1-6, 2010.
  19. Q. Tu, Z. Xu, and L. Xu, “Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters,” IEEE Trans. Power Del., Vol. 26, No. 3, pp. 2009-2016, Jul. 2011. https://doi.org/10.1109/TPWRD.2011.2115258
  20. F. Yan, G. Tang, Z. He, M. Kong, and W. Ma, "A novel circulating current controller for modular multilevel converter," Automation of Electric Power Systems, Vol. 38, No.1, pp. 104-108, Jan. 2014.
  21. A. Antonopoulos, L. Angquist, and H.-P. Nee, "On dynamics and voltage control of the Modular Multilevel Converter," Eur. Conf. Power Electron. Appl., pp. 1-10, Sep. 2009.
  22. J. Gao, J. Su, H. Gao, Y. Ding, and J. Wang. "Capacitor voltage and circulation current control strategy in modular multilevel converter," Power System Protection and Control, Vol. 42, No.3, pp. 56-62, Feb. 2014.
  23. M. Hagiwara and H. Akagi. "Control and experiment of pulsewidth-modulated modular multilevel converters," IEEE Trans. Power Electron., Vol. 24, No. 7, pp. 1737-1746, Jul. 2009. https://doi.org/10.1109/TPEL.2009.2014236
  24. S. Geng, Y. Gan, Y. Li, L. Hang, and G. Li, "Novel circulating current suppression strategy for MMC based on quasi-PR controller," IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 3560-3565, 2016.
  25. M. Zhang, L. Huang, W. Yao, and Z. Lu, “Circulating harmonic current elimination of a CPS-PWM based modular multilevel converter with a Plug-In repetitive controller,” IEEE Trans. Power Electron., Vol. 29, No. 9, pp. 2083-2097, Apr. 2009.