참고문헌
- P. Baird and J. C. Wood, Harmonic morphisms between Riemannain manifolds, Clarendon Press, Oxford University press, Oxford. 2003.
-
R. Caddeo and S. Montaldo, C. Oniciuc, Biharmonic submanifolds of
${\mathbb{S}}^3$ , Internat. J. Math., 12(2001), 867-876. https://doi.org/10.1142/S0129167X01001027 - Q. Chen, Stability and constant boundary-value problems of harmonic maps with potential, J. Austral. Math. Soc. Ser. A, 68(2000), 145-154.
- A. M. Cherif and M. Djaa, Geometry of energy and bienergy variations between Riemannian Manifolds, Kyungpook Math. J., 55(2015), 715-730. https://doi.org/10.5666/KMJ.2015.55.3.715
- A. M. Cherif, M. Djaa and K. Zegga, Stable f-harmonic maps on sphere, Commun. Korean Math. Soc., 30(4)(2015), 471-479. https://doi.org/10.4134/CKMS.2015.30.4.471
- J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86(1964), 109-160.
- S. Feng and Y. Han, Liouville type theorems of f-harmonic maps with potential, Results Math., 66(2014), 43-64. https://doi.org/10.1007/s00025-014-0363-9
- R. E. Greene and H. Wu, Function theory on manifolds which possess a pole, Lecture Notes in Mathematics 699, Springer-Verlag, Berlin, 1979.
-
M. C. Hong and L. Lemaire, Multiple solutions of the static Landau-Lifshitz equation from
$B^2$ into$S^2$ , Math. Z., 220(1995), 295-306. - J. Karcher and J. C. Wood, Nonexistence results and growth properties for harmonic maps and forms, J. Reine Angew. Math., 353(1984), 165-180.
- B. O'Neil, Semi-Riemannian Geometry, Academic Press, New York. 1983.
- S. Ouakkas, R. Nasri and M. Djaa, On the f-harmonic and f-biharmonic maps, JP J. Geom. Topol., 10(1)(2010), 11-27.
- H. C. J. Sealey, Some conditions ensuring the vanishing of harmonic differential forms with applications to harmonic maps and Yang-Mills theory, Math. Proc. Cambridge Philos. Soc., 91(1982), 441-452. https://doi.org/10.1017/S030500410005948X
- Y. Xin, Some results on stable harmonic maps, Duke Math. J., 47(1980), 609-613. https://doi.org/10.1215/S0012-7094-80-04736-5
- Y. Xin, Harmonic maps of bounded symmetric domains, Math. Ann., 303(1995), 417-433. https://doi.org/10.1007/BF01460998
- Y. Xin, Geometry of harmonic maps, Birkhauser Boston, Boston, MA, 1996.