DOI QR코드

DOI QR Code

Development of Molecular Diagnosis Using Multiplex Real-Time PCR and T4 Phage Internal Control to Simultaneously Detect Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis from Human Stool Samples

  • Shin, Ji-Hun (Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center) ;
  • Lee, Sang-Eun (Division of Vectors and Parasitic Diseases, Korea Centers for Disease Control and Prevention) ;
  • Kim, Tong Soo (Department of Tropical Medicine and Inha Research Institute for Medical Sciences, Inha University School of Medicine) ;
  • Ma, Da-Won (Division of Vectors and Parasitic Diseases, Korea Centers for Disease Control and Prevention) ;
  • Cho, Shin-Hyeong (Division of Vectors and Parasitic Diseases, Korea Centers for Disease Control and Prevention) ;
  • Chai, Jong-Yil (Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center) ;
  • Shin, Eun-Hee (Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center)
  • Received : 2018.08.20
  • Accepted : 2018.09.21
  • Published : 2018.10.31

Abstract

This study aimed to develop a new multiplex real-time PCR detection method for 3 species of waterborne protozoan parasites (Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis) identified as major causes of traveler's diarrhea. Three target genes were specifically and simultaneously detected by the TaqMan probe method for multiple parasitic infection cases, including Cryptosporidium oocyst wall protein for C. parvum, glutamate dehydrogenase for G. lamblia, and internal transcribed spacer 1 for C. cayetanensis. Gene product 21 for bacteriophage T4 was used as an internal control DNA target for monitoring human stool DNA amplification. TaqMan probes were prepared using 4 fluorescent dyes, $FAM^{TM}$, $HEX^{TM}$, $Cy5^{TM}$, and CAL Fluor $Red^{(R)}$ 610 on C. parvum, G. lamblia, C. cayetanensis, and bacteriophage T4, respectively. We developed a novel primer-probe set for each parasite, a primer-probe cocktail (a mixture of primers and probes for the parasites and the internal control) for multiplex real-time PCR analysis, and a protocol for this detection method. Multiplex real-time PCR with the primer-probe cocktail successfully and specifically detected the target genes of C. parvum, G. lamblia, and C. cayetanensis in the mixed spiked human stool sample. The limit of detection for our assay was $2{\times}10$ copies for C. parvum and for C. cayetanensis, while it was $2{\times}10^3$ copies for G. lamblia. We propose that the multiplex real-time PCR detection method developed here is a useful method for simultaneously diagnosing the most common causative protozoa in traveler's diarrhea.

Keywords

References

  1. Diemert DJ. Prevention and self-treatment of traveler's diarrhea. Clin Microbiol Rev 2006; 19: 583-594. https://doi.org/10.1128/CMR.00052-05
  2. DuPont HL. Travellers' diarrhoea: contemporary approaches to therapy and prevention. Drugs 2006; 66: 303-314. https://doi.org/10.2165/00003495-200666030-00003
  3. de la Cabada Bauche J, DuPont HL. New developments in traveler's diarrhea. Gastroenterol Hepatol 2011; 7: 88-95.
  4. DuPont HL. Systematic review: the epidemiology and clinical features of travellers' diarrhoea. Aliment Pharmacol Ther 2009; 30: 187-196. https://doi.org/10.1111/j.1365-2036.2009.04028.x
  5. Baldursson S, Karanis P. Waterborne transmission of protozoan parasites: review of worldwide outbreaks - an update 2004-2010. Water Res 2011; 45: 6603-6614. https://doi.org/10.1016/j.watres.2011.10.013
  6. Strausbaugh LJ, Herwaldt BL. Cyclospora cayetanensis: a review, focusing on the outbreaks of cyclosporiasis in the 1990s. Clin Infect Dis 2000; 31: 1040-1057. https://doi.org/10.1086/314051
  7. Heim A, Ebnet C, Harste G, Pring-Akerblom P. Rapid and quantitative detection of human adenovirus DNA by real-time PCR. J Med Virol 2003; 70: 228-239. https://doi.org/10.1002/jmv.10382
  8. Shin JH, Lee SE, Kim TS, Ma DW, Chai JY, Shin EH. Multiplextouchdown pcr to simultaneously detect Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis, the major causes of traveler's diarrhea. Korean J Parasitol 2016; 54: 631. https://doi.org/10.3347/kjp.2016.54.5.631
  9. Verweij JJ, Blange RA, Templeton K, Schinkel J, Brienen EA, van Rooyen MA, van Lieshout L, Polderman AM. Simultaneous detection of Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum in fecal samples by using multiplex real-time PCR. J Clin Microbiol 2004; 42: 1220-1223. https://doi.org/10.1128/JCM.42.3.1220-1223.2004
  10. Subrungruang I, Mungthin M, Chavalitshewinkoon-Petmitr P, Rangsin R, Naaglor T, Leelayoova S. Evaluation of DNA extraction and PCR methods for detection of Enterocytozoon bienuesi in stool specimens. J Clin Microbiol 2004; 42: 3490-3494. https://doi.org/10.1128/JCM.42.8.3490-3494.2004
  11. Gerriets JE, Greiner TC, Gebhart CL. Implementation of a T4 extraction control for molecular assays of cerebrospinal fluid and stool specimens. J Mol Diagn 2008; 10: 28-32. https://doi.org/10.2353/jmoldx.2008.070028
  12. Piper MB, Bankier AT, Dear PH. A HAPPY map of Cryptosporidium parvum. Genome Res 1998; 8: 1299-1307. https://doi.org/10.1101/gr.8.12.1299
  13. Yee J, Dennis PP. Isolation and characterization of a NADP-dependent glutamate dehydrogenase gene from the primitive eucaryote Giardia lamblia. J Biol Chem 1992; 267: 7539-7544.
  14. Torres-Machorro AL, Hernandez R, Cevallos AM, Lopez-Villasenor I. Ribosomal RNA genes in eukaryotic microorganisms: witnesses of phylogeny? FEMS Microbiol Rev 2009; 34: 59-86.
  15. Gajadhar AA, Allen JR. Factors contributing to the public health and economic importance of waterborne zoonotic parasites. Vet Parasitol 2004; 126: 3-14. https://doi.org/10.1016/j.vetpar.2004.09.009
  16. Ramirez-Castillo FY, Loera-Muro A, Jacques M, Garneau P, Avelar-Gonzalez FJ, Harel J, Guerrero-Barrera AL. Waterborne pathogens: detection methods and challenges. Pathogens 2015; 4: 307-334. https://doi.org/10.3390/pathogens4020307
  17. Law JW, Ab Mutalib NS, Chan KG, Lee LH. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 2015; 5: 770.
  18. Haque R, Roy S, Siddique A, Mondal U, Rahman SM, Mondal D, Houpt E, Petri WA Jr. Multiplex real-time PCR assay for detection of Entamoeba histolytica, Giardia intestinalis, and Cryptosporidium spp. Am J Trop Med Hyg 2007; 76: 713-717. https://doi.org/10.4269/ajtmh.2007.76.713
  19. Campoy JA, Martinez-Gomez P, Ruiz D, Rees J, Celton JM. Developing microsatellite multiplex and megaplex PCR systems for high-throughput characterization of breeding progenies and linkage maps spanning the apricot (Prunus armeciaca L.) genome. Plant Mol Biol Rep 2010; 28: 560-568. https://doi.org/10.1007/s11105-010-0186-0
  20. Riyaz-Ul-Hassan S, Syed S, Johri S, Verma V, Qazi GN. Application of a multiplex PCR assay for the detection of Shigella, Escherichia coli and Shiga toxin-producing Esch. coli in milk. J Dairy Res 2009; 76: 188-194. https://doi.org/10.1017/S0022029909004026
  21. Schena L, Hughes KJ, Cooke DE. Detection and quantification of Phytophthora ramorum, P. kernoviae, P. citricola and P. quercina in symptomatic leaves by multiplex real-time PCR. Mol Pland Pathol 2006; 7: 365-379. https://doi.org/10.1111/j.1364-3703.2006.00345.x
  22. Longjam N, Deb R, Sarmah AK, Tayo T, Awachat, VB, Saxena VK. A brief review on diagnosis of foot-and-mouth disease of livestock: conventional to molecular tools. Vet Med Int 2011; 2011: 905768.
  23. Johnson G, Nolan T, Bustin SA. Real-time quantitative PCR, pathogen detection and MIQE. In Wilks M ed, PCR Detection of Microbial Pathogens. Totowa, USA. Springer. 2013, pp 1-16.
  24. Rabinovitch A, Fishov I, Hadas H, Einav M, Zaritsky A. Bacteriophage T4 development in Escherichia coli is growth rate dependent. J Theor Biol 2002; 216: 1-4. https://doi.org/10.1006/jtbi.2002.2543
  25. Spano F, Putignani L, McLauchlin J, Casemore DP, Crisanti A. PCR-RFLP analysis of the Cryptosporidium oocyst wall protein (COWP) gene discriminates between C. wrairi and C. parvum, and between C. parvum isolates of human and animal origin. FEMS Microbiol Lett 1997; 150: 209-217. https://doi.org/10.1016/S0378-1097(97)00115-8
  26. Read CM, Monis PT, Thompson RC. Discrimination of all genotypes of Giardia duodenalis at the glutamate dehydrogenase locus using PCR-RFLP. Infect Genet Evol 2004; 4: 125-130. https://doi.org/10.1016/j.meegid.2004.02.001
  27. Adam RD, Ortega YR, Gilman RH, Sterling CR. Intervening transcribed spacer region 1 variability in Cyclospora cayetanensis. J Clin Microbiol 2000; 38: 2339-2343.
  28. Fayer R, Speer CA, Dubey JP. Cryptosporidiosis of Man and Animals. Boca Raton, USA. CRC Press. 1990, pp 1-41.
  29. Olivier C, van de Pas S, Lepp PW, Yoder K, Relman DA. Sequence variability in the first internal transcribed spacer region within and among Cyclospora species is consistent with polyparasitism. Int J Parasitol 2001; 31: 1475-1487. https://doi.org/10.1016/S0020-7519(01)00283-1
  30. David EB, Coradi ST, Oliveira-Sequeira TCG, Ribolla PEM, Katagiri S, Guimaraes S. Diagnosis of Giardia infections by PCRbased methods in children of an endemic area. J Venom Anim Toxins incl Trop Dis 2011; 17: 209-215.

Cited by

  1. Cyclospora cayetanensis and Cyclosporiasis: An Update vol.7, pp.9, 2019, https://doi.org/10.3390/microorganisms7090317
  2. Advances in Cyclosporiasis Diagnosis and Therapeutic Intervention vol.10, pp.None, 2018, https://doi.org/10.3389/fcimb.2020.00043
  3. Comparative Performance of Eight PCR Methods to Detect Cryptosporidium Species vol.10, pp.6, 2018, https://doi.org/10.3390/pathogens10060647
  4. Comparison of Three Real-Time PCR Assays Targeting the SSU rRNA Gene, the COWP Gene and the DnaJ-Like Protein Gene for the Diagnosis of Cryptosporidium spp. in Stool Samples vol.10, pp.9, 2018, https://doi.org/10.3390/pathogens10091131