• Title/Summary/Keyword: 응결시점

Search Result 20, Processing Time 0.022 seconds

Setting Time Evaluation of Concrete Using Electrical Resistivity Measurement (전기비저항 측정을 이용한 콘크리트 응결시점 평가)

  • Lee, Han Ju;Yim, Hong Jae
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.361-369
    • /
    • 2017
  • Setting time of cement-based materials can represent a developing strength in early-age mixture, and it can be used a significant parameter of high-performance concrete having various mix-proportions. Generally, initial and final setting time of concrete is measured by penetration resistance method that used a wet-sieving mortar mixture, therefore, it hardly represents the setting time of sound concrete including coarse aggregate. Recently, several nondestructive methods, such as ultrasonic velocity and impendence measurement, are proposed to evaluate the setting time of fresh concrete. This study attempts to measure an electrical resistivity using four-electrode method for evaluation of setting time in early-age cement-based materials. For this purpose, total 10 mixtures are prepared as different mix-proportions including chemical admixture. Based on the experimental results, two electrical parameters, such as initial electrical resistivity and rising time, are proposed to reflect a microstructure development by hydration of cement-based materials. As a result, proposed parameter is also discussed with the measured setting time by penetration resistance method.

Evaluation of Setting Delay in Mortar Adding Superplasticizer Using Electrical Resistivity Measurement (전기비저항 측정법을 이용한 유동화 모르타르의 응결 지연 현상 평가)

  • Lee, Hanju;Yim, Hong Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.9-15
    • /
    • 2018
  • According to the development and use of self-consolidating concrete in field, interest in material properties of early-age concrete is rising. Setting time with hydration process of cement is one of significant indicator to evaluate the early-age material properties of concrete, various nondestructive methods including penetration resistance measurement have been proposed to estimate setting time. This study performed an experimental approach to evaluate setting time delay in mortar adding superplasticizer using electrical resistivity measurement. For this purpose, total nine types of mortar samples were prepared, and its electrical resistivity was monitoring during 24h after mixing. From the experimental result, rising time of electrical resistivity was used to evaluate setting delay of mortar, and penetration resistance was also measured for comparison. In addition, dynamic elastic modulus and compressive strength of 1day mortar were measured to investigate a possibility the use of electrical resistivity measurement for evaluation of early-age material properties.

Setting Time Evaluation on Cement Paste with Retarder Using Non-Destructive Measurements (비파괴 측정법을 이용한 지연제 첨가 시멘트 페이스트의 응결 평가)

  • Ahn, Yu-Rhee;Jun, Yu-Bin;Yim, Hong Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.48-56
    • /
    • 2022
  • Controlling the setting time of cementitious materials is one of the most important factors in securing early-age performance of concrete structures. Recently, the use of retarding admixtures, which enable the inhibition of some hydration products to control the securing time due to average temperature rise is suggested. Although various non-destructive evaluation methods have been proposed to evaluate cement hydration and hardening of cement-based materials to overcome the limitations of Vicat needle test, experimental research is still required to use the non-destructive evaluation method with added retarding admixtures. In this study, measurements of electrical resistivity and ultrasonic wave velocity in early-aged cement pastes were performed according to the addition of retarding admixture(tartaric acid). The setting time of the cement pastes was evaluated by obtained rising time of the both non-destructive measurements. As a result, the possibility of evaluating the setting delay in cement pastes was confirmed through comparative analysis with the initial and final setting times by Vicat test. In addition, X-ray diffraction results at the rising time of electrical resistivity showed a key hydration product affecting the setting delay.

Setting Characteristic Assessment of Cementitious Materials using Electrical Impedance Spectroscopy (전기 임피던스 분광법을 이용한 시멘트계 재료의 응결 특성 평가)

  • Lee, Jun-Cheol;Park, In-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.474-480
    • /
    • 2017
  • In this study, the evolution of electrical impedance of electric nodes was investigated to determine the setting time of cement paste using the electrical impedance spectroscopy method. The electric nodes were embedded in fresh cement paste and the electrical impedance signatures were continuously monitored. Vicat needle test and semi-adiabatic calorimetry test were also conducted to validate the electrical impedance spectroscopy method. During hydration period of cement paste, the magnitude of conductance gradually increased, and then started to decrease rapidly at a first certain time. After that, the magnitude of conductance gradually decreased at a second certain time. The times of turning point in the curves of magnitude of conductance seem to be related with the setting time by Vicat needle test. Also, the setting times by the electrical impedance spectroscopy method are well posed within the setting period estimated by the semi-adiabatic calorimetry test. Based on the results, it can be concluded that the setting time of cement paste can be effectively monitored through the electrical impedance spectroscopy method.

Properties and Prediction Model for Ultra High Performance Fiber Reinforced Concrete (UHPFRC): (I) Evaluation of Setting and Shrinkage Characteristics and Tensile Behavior (초고성능 섬유보강 콘크리트(UHPFRC)의 재료 특성 및 예측모델: (I) 응결 및 수축 특성과 인장거동 평가)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.307-315
    • /
    • 2012
  • Recently, ultra high performance fiber reinforced concrete (UHPFRC) having over 180 MPa compressive strength and 10 MPa tensile strength has been developed in Korea. However, UHPFRC represents different material properties with normal concrete (NC) and conventional high performance concrete (HPC) such as a high early age autogenous shrinkage and a rapid dry on the surface, because it has a low water-binder ratio and high fineness admixtures without coarse aggregate. In this study, therefore, to propose suitable experimental methods and regulations, and to evaluate mechanical properties at a very early age for UHPFRC, setting, shrinkage and tensile tests were performed. From the setting test results, paraffin oil was an appropriate material to prevent drying effect on the surface, because if paraffin oil is applied on the surface, it can efficiently prevent the drying effect and does not disturb or catalyze the hydration of cement. From the ring-test results, it was defined that the shrinkage stress is generated at the time when the graph tendency of temperature and strain of inner steel ring is changed. By comparing with setting test result, the shrinkage stress was firstly occurred as the penetration resistance of 1.5 MPa was obtained, and it was about 0.6 and 2.1 hour faster than those of initial and final sets. So, the starting time of autogenous shrinkage measurement (time-zero) of UHPFRC was determined when the penetration resistance of 1.5 MPa was obtained. Finally, the tensile strength and elastic modulus of UHPFRC were measured from near initial setting time by using a very early age tensile test apparatus, and the prediction models for tensile strength and elastic modulus were proposed.

Evaluation of Setting Time in Cement Paste with Fly Ash Replacement Using Piezoelectric Sensors (압전센서를 이용한 플라이애시 치환 시멘트 페이스트의 응결 시점 평가)

  • Jun-Cheol Lee;Tae-Yong Go;Chang-Yong Yi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.162-168
    • /
    • 2024
  • This study investigated the setting characteristics of cement paste with varying proportions of fly ash replacement using the electro-mechanical impedance (EMI) sensing technique. Cement paste samples were prepared with a water-to-binder ratio of 40 %, substituting fly ash for 10 %, 20 %, and 30 % of the cement weight. Piezoelectric (PZT) sensors were embedded in the center of each cement paste sample to continuously monitor the EMI signals. Vicat needle test and semi-adiabatic calorimetry test were conducted to validate the reliability of the EMI sensing technique in monitoring the setting of cement paste. Experimental results revealed notable changes in the magnitude and resonant frequency of the EMI resonant peaks during the setting time. It was confirmed that the setting times measured through the EMI sensing technique were correlated with those determined by the Vicat needle test and semi-adiabatic calorimetry test.

Setting Estimation of Cement Paste Using New-type Embedded Sensor (매입형 센서를 활용한 시멘트 풀의 응결 시간 측정)

  • Shin, Kyung-Joon;Lee, Do-Keun;Seo, Dong-Wan;Yoo, Chul-Min;Lim, Min-Hyuk;Lim, Sung-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.483-488
    • /
    • 2016
  • The present study proposes an economical embedded ring-sensor that can measure a strain behavior of cement paste and mortar in early age. Using the proposed ring-sensor, the experimental method is proposed that can measure the setting time of the cement paste and mortar conveniently. The experimental study has been conducted using the mixtures of which W/C are 0.30, 0.35, 0.40, and 0.45. From the test result, the setting times measured by convectional test methods such as vicat method and penetration resistance method are compared with the setting time proposed by this study. The result reveals that the proposed ring-sensor can effectively measure the early age behavior so that can evaluate the time when the contraction starts. In addition, the contraction starting time can be regarded as a rational setting time, which is similar to the initial setting of convectional test methods.

Setting Assessment of Hogh Strength Concrete Using the Ultrasonic Pulse Velocity Monitoring (초음파 속도 모니터링에 의한 고강도 콘크리트의 응결 평가)

  • 이회근;이광명
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.973-981
    • /
    • 2002
  • Recently, the use of high strength concrete (HSC) has increased dramatically md however, few studies have been conducted on the early-age properties of HSC such as setting. The penetration resistance test (specified by KS F 2436) that is the standard test method for determining initial and final setting times of concrete, may not be appropriate for HSC because of the high viscosity of the mortar mixture. To address this issue, an ultrasonic pulse velocity (UPV) monitoring system was used to investigate the setting behavior of mortar and concrete. The experimental study was carried out to measure the UPV's of mortars and concretes having various water/binder ratios (W/B) and various fly ash replacement levels, during the first 24 hours of testing. Test results showed that the UPV in concrete was developed faster than that of mortar with the same W/B, and that of ordinary concrete was greater than that of fly ash concrete. Typical values of UPV were suggested that correspond to the initial and final setting times, based on following criteria: (1) the penetration resistance method; (2) the instant when the UPV begins to develop; and (3) the instant when the UPV development rate is maximum. The method and UPV monitoring device used in this study is promising for the setting assessment of concrete, particularly for HSC.

An Experimental Study on the Effects of Early-age Vibrations for Properties of Concrete (진동이 양생초기 콘크리트에 미치는 영향에 관한 연구)

  • 오병환;송혜금;조재열
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.81-87
    • /
    • 1998
  • 최근 들어 교통난 해소를 위한 도로확폭 공사나 파일항타 및 발파 등의 공사가 많이 진행되고 있으며, 이러한 경우 진동의 영향으로 콘크리트의 품질 저하에 영향을 미칠 것으로 예상된다. 이에 따라 본 연구에서는 진동과 굳지 않은 콘크리트에 미치는 영향을 평가하기 위하여 실험변수를 진동속도, 진동발생점등으로 나누어, 콘크리트의 압축강도, 부착강도를 측정하였다. 또한 응결시간을 측정하여 외부 진동용인이 응력에 미치는 영향을 평가하였다. 진동속도는 0.25cm/sec ~4.2cm/sec까지 변화시켰고, 진동가력시점은 타설 직후(0시간)부터 타설 후 2, 4, 6, 12 시간 후 에 진동을 가하였다. 본 연구의 실험 결과 진동속도 0.25cm/sec 에서는 압축 강도와 부착강도가 증가하는 반면에 진동속도 0.5cm/sec 이상에서는 압축강도는 5~12% 정도 감소하고 부착강도도 이와 유사하게 감소하는 것으로나타나고 있다. 응결시간은 0.25cm/sec의 작은 진동에서는 영향이 거의 없으나 0.5cm/sec 이상에서는 타설 직후의 진동시 응결시간이 다소 빨라지는 것으로 나타났다. 본 연구 결과, 양생초기 콘크리트의 진동 허용치는 약 0.3~0.4cm/sec 로 나타나고 있으며, 이것은 앞으로 실제 구조물의 시공시 진동규제치로서 하나의 유용한 자료가 될 수 있을 것으로 사료된다.

Setting Characteristic Assessment of Cementitious Materials using Piezoelectric Sensor (압전소자를 이용한 시멘트계 재료의 응결 특성 평가)

  • Lee, Chang Joon;Lee, Jun Cheol;Shin, Sung Woo;Kim, Wha Jung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.389-395
    • /
    • 2016
  • The evolution of electro-mechanical impedance (EMI) of the piezoelectricity (PZT) sensor was investigated to determine the setting times of cementitious materials in this study. The PZT sensor coated with non-conductive acrylic resin was embedded in cement paste before casting and the EMI signatures were continuously measured. Vicat needle test and semi-adiabatic calorimetry test were also conducted to justify the validity of EMI senssing technique in setting monitoring of cementitious materials. The results show that significant changes in EMI resonant peak magnitude and frequency during setting process were observed, and that the setting times determined by EMI sensing technique were relevant to the setting times measured by Vicat needle test and semi-adiabatic calorimetry test.