Acknowledgement
Supported by : Vietnam National Foundation for Science and Technology Development (NAFOSTED)
References
- Akgoz, B. and Civalek, O. (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020
- Bambill, D.V., Rossit, C.A. and Felix, D.H. (2015), "Free vibrations of stepped axially functionally graded Timoshenko beams", Meccanica, 50(4), 1073-1087. https://doi.org/10.1007/s11012-014-0053-4
- Birman, V. and Byrd, L.W. (2007), "Modeling and Analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216. https://doi.org/10.1115/1.2777164
- Calim, F.F. (2016), "Transient analysis of axially functionally graded Timoshenko beams with variable cross-section", Compos. Part B, 98, 472-483. https://doi.org/10.1016/j.compositesb.2016.05.040
- Chakraborty, A., Gopalakrishnan, S. and Reddy, J.N. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4
- Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2002), Concepts and Applications of Finite Element Analysis, (4th Ed.), John Wiley & Sons, New York, NY, USA.
-
Frikha, A., Hajlaoui, A., Wali, M. and Dammak, F. (2016), "A new higher order
$C^0$ mixed beam element for FGM beams analysis", Compos. Part B Eng., 106, 181-189. https://doi.org/10.1016/j.compositesb.2016.09.024 - Gan, B.S., Trinh, T.H., Le, T.H. and Nguyen, D.K. (2015), "Dynamic response of non-uniform Timoshenko beams made of axially FGM subjected to multiple moving point loads", Struct. Eng. Mech., Int. J., 53(5), 981-995. https://doi.org/10.12989/sem.2015.53.5.981
- Ghazaryan, D., Burlayenko, V.N., Avetisyan, A. and Bhaskar, A. (2017), "Free vibration analysis of functionally graded beams with non-uniform cross-section using the differential transform method", J. Eng. Math., DOI: 10.1007/s10665-017-9937-3
- Hao, D. and Wei, C. (2016), "Dynamic characteristics analysis of bi-directional functionally graded Timoshenko beams", Compos. Struct., 141, 253-263. https://doi.org/10.1016/j.compstruct.2016.01.051
- Hein, H. and Feklistova, L. (2011), "Free vibrations of nonuniform and axially functionally graded beams using Haar wavelets", Eng. Struct., 33(12), 3696-3701. https://doi.org/10.1016/j.engstruct.2011.08.006
- Huang, Y. and Li, X.-F. (2010), "A new approach for free vibration of axially functionally graded beams with non-uniform crosssection", J. Sound Vib., 329(11), 2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029
- Huang, Y. and Li, X.-F. (2011), "Buckling analysis of nonuniform and axially graded columns with varying flexural rigidity", ASCE J. Eng. Mech., 137(1), 73-81. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000206
- Huang, Y., Yang, L.-E. and Luo, Q.-Z. (2013), "Free vibration of axially functionally graded Timoshenko beams with nonuniform cross-section", Compos. Part B Eng., 45(1), 1493-1498. https://doi.org/10.1016/j.compositesb.2012.09.015
- Huynh, T.A., Lieu, X.Q. and Lee, J. (2017), "NURBS-based modeling of bidirectional functionally graded Timoshenko beams for free vibration problem", Compos. Struct., 160, 1178-1190. https://doi.org/10.1016/j.compstruct.2016.10.076
- Kadoli, R., Akhtar, K. and Ganesan, N. (2008), "Static analysis of functionally graded beams using higher order shear deformation theory", Appl. Math. Model., 32(12), 2509-2525. https://doi.org/10.1016/j.apm.2007.09.015
- Kahya, V. and Turan, M. (2017), "Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory", Compos. Part B Eng., 109, 108-115. https://doi.org/10.1016/j.compositesb.2016.10.039
- Karamanli, A. (2017), "Bending behaviour of two directional functionally graded sandwich beams by using a quasi-3d shear deformation theory", Compos. Struct., 174, 70-86. https://doi.org/10.1016/j.compstruct.2017.04.046
- Kosmatka, J.B. (1995), "An improved two-node finite element for stability and natural frequencies of axial-loaded Timoshenko beams", Comput. Struct., 57(1), 141-149. https://doi.org/10.1016/0045-7949(94)00595-T
- Lezgy-Nazargah, M. (2015), "Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach", Aerosp. Sci. Technol., 45, 154-164. https://doi.org/10.1016/j.ast.2015.05.006
- Li, X.-F. (2008), "A unified approach for analyzing static and dynamic behaviours of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
- Li, X.-F., Kang, Y.-A. and Wu, J.-X. (2013), "Exact frequency equations of free vibration of exponentially functionally graded beams", App. Acoust., 74(3), 413-420. https://doi.org/10.1016/j.apacoust.2012.08.003
- Li, L. and Zhang, D. (2015), "Dynamic analysis of rotating axially FG tapered beams based on a new rigid-flexible coupled dynamic model using the B-spline method", Compos. Struct., 124, 357-367. https://doi.org/10.1016/j.compstruct.2015.01.018
- Lu, C.F., Chen, W.Q., Xu, R.Q. and Lim, C.W. (2008), "Semianalytical elasticity solutions for bi-directional functionally graded beams", Int. J. Solids Struct., 45, 258-275. https://doi.org/10.1016/j.ijsolstr.2007.07.018
- Mahi, A., Adda Bedia, E.A., Tounsi, A. and Mechab, I. (2010), "An analytical method for temperature-dependent free vibration analysis of functionally graded beams with general boundary conditions", Compos. Struct., 92(8), 1877-1887. https://doi.org/10.1016/j.compstruct.2010.01.010
- Nguyen, D.K. (2013), "Large displacement response of tapered cantilever beams made of axially functionally graded material", Compos. Part B Eng., 55, 298-305. https://doi.org/10.1016/j.compositesb.2013.06.024
- Nguyen, D.K. and Gan, B.S. (2014), "Large deflections of tapered functionally graded beams subjected to end forces", Appl. Math. Model., 38(11-12), 3054-3066. https://doi.org/10.1016/j.apm.2013.11.032
- Nguyen, D.K. and Bui, V.T. (2017), "Dynamic analysis of functionally graded Timoshenko beams in thermal environment using a higher-order hierarchical beam element", Math. Prob. Eng. DOI: https://doi.org/10.1155/2017/7025750
- Nguyen, D.K., Nguyen, Q.H., Tran, T.T. and Bui, V.T. (2017), "Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load", Acta Mech., 228, 141-155. https://doi.org/10.1007/s00707-016-1705-3
- Nemat-Alla, M. and Noda, N. (2000), "Edge crack problem in a semi-infinite FGM plate with a bi-directional coefficient of thermal expansion under two-dimensional thermal loading", Acta Mech., 144(3-4), 211-229. https://doi.org/10.1007/BF01170176
- Niknam, H., Fallah, A. and Aghdam, M.M. (2014), "Nonlinear bending of functionally graded tapered beams subjected to thermal and mechanical loading", Int. J. Non-Linear Mech., 65, 141-147. https://doi.org/10.1016/j.ijnonlinmec.2014.05.011
- Pydah, A. and Sabale, A. (2017), "Static analysis of bi-directional functionally graded curved beams", Compos. Struct., 160, 867-876. https://doi.org/10.1016/j.compstruct.2016.10.120
- Rajasekaran, S. (2013), "Buckling and vibration of axially functionally graded nonuniform beams using differential transformation based dynamic stiffness approach", Meccanica, 48(5), 1053-1070. https://doi.org/10.1007/s11012-012-9651-1
- Rajasekaran, S. and Tochaei, E.N. (2014), "Free vibration analysis of axially functionally graded tapered Timoshenko beams using differential transformation element method and differential quadrature element method of lowest-order", Meccanica, 49(4), 995-1009. https://doi.org/10.1007/s11012-013-9847-z
- Shahba, A. and Rajasekaran, S. (2012), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", App. Math. Model., 36(7), 3094-3111. https://doi.org/10.1016/j.apm.2011.09.073
- Shahba, A., Attarnejad, R., Marvi, M.T. and Hajilar, S. (2011), "Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and nonclassical boundary conditions", Compos. Part B Eng., 42(4), 801-808.
- Shafiei, N. and Kazemi, M. (2017), "Buckling analysis on the bidimensional functionally graded porous tapered nano-/microscale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019
- Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Kazemi, M. (2017), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Method Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007
- Simsek, M. (2015), "Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions", Compos. Struct., 133, 968-997. https://doi.org/10.1016/j.compstruct.2015.08.021
- Tang, A.-Y., Wu, J.-X., Li, X.-F. and Lee, K.Y. (2014), "Exact frequency equations of free vibration of exponentially nonuniform functionally graded Timoshenko beams", Int. J. Mech. Sci., 89, 1-11. https://doi.org/10.1016/j.ijmecsci.2014.08.017
- Trinh, L.C., Vo, P.T., Thai, H.T. and Nguyen, T.K. (2016), "An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads", Compos. Part B Eng., 100, 152-163. https://doi.org/10.1016/j.compositesb.2016.06.067
- Trinh, L.C., Vo, T.P., Thai, H-T. and Nguyen, T-K. (2018), "Sizedependent vibration of bi-directional functionally graded microbeams with arbitrary boundary conditions", Compos. Part B Eng., 134, 225-245. https://doi.org/10.1016/j.compositesb.2017.09.054
- Wang, Z., Wang, X., Xu, G., Cheng, S. and Zeng, T. (2016), "Free vibration of two-directional functionally graded beams", Compos. Struct., 135, 191-198. https://doi.org/10.1016/j.compstruct.2015.09.013
- Wattanasakulpong, N., Prusty, B.G. and Kelly, D.W. (2011), "Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams", Int. J. Mech. Sci., 53(9), 734-743. https://doi.org/10.1016/j.ijmecsci.2011.06.005
- Zhao, Y., Huang, Y. and Guo, M. (2017), "A novel approach for free vibration of axially functionally graded beams with nonuniform cross-section based on Chebyshev polynomials theory", Compos. Struct., 168, 277-284. https://doi.org/10.1016/j.compstruct.2017.02.012
- Zienkiewicz, O.C. and Taylor, R.L. (1997), The Finite Element Method, Vol. 1: Basic Formulation an Linear Problems, (4th Ed.), Mc. Graw-Hill Book Company, London, UK.
Cited by
- Dynamic Behavior of a Bidirectional Functionally Graded Sandwich Beam under Nonuniform Motion of a Moving Load vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/8854076
- An inclined FGM beam under a moving mass considering Coriolis and centrifugal accelerations vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.061
- Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns vol.35, pp.2, 2018, https://doi.org/10.12989/scs.2020.35.2.295
- Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models vol.36, pp.3, 2018, https://doi.org/10.12989/scs.2020.36.3.293
- Exact third-order static and free vibration analyses of functionally graded porous curved beam vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.001