DOI QR코드

DOI QR Code

Convolution Neural Network based TW3 Maximum Height Prediction System

컨볼루션 신경망 기반의 TW3 최대신장예측 시스템

  • Received : 2018.06.14
  • Accepted : 2018.07.23
  • Published : 2018.10.31

Abstract

The current TW3 - based maximum height prediction technique used in KMAA(Korean Medical Academy of Auxology) is manual and subjective, and it requires a lot of time and effort in the medical treatment, while the interest in the child's growth is very high. In addition, the technique of classifying images using deep learning, especially convolutional neural networks, is used in many fields at a more accurate level than the human eyes, also there is no exception in the medical field. In this paper, we introduce a TW3 algorithm using deep learning, that uses the convolutional neural network to predict the growth level of the left hand bone, to predict the maximum height of child and youth in order to increase the reliability of predictions and improve the convenience of the doctor.

현재 우리 사회는 아동의 성장발달에 대한 관심이 증가한데 비해 대한성장의학회에서 사용되고 있는 TW3 기반의 최대신장예측 기법은 수동으로 이루어지고 있어 주관적이며, 진료에 있어 다소 많은 시간과 노력을 필요로 한다는 단점이 있다. 또한 현재 딥러닝, 특히 컨볼루션 신경망을 활용해 영상을 분류하는 기술은 인간의 눈보다 더 정확한 수준으로 다양한 분야에 활용되고 있으며 의료분야 또한 예외는 아니다. 따라서 성장 예측의 신뢰도를 높이고, 진단자의 편의성을 증대하기 위해 본 논문에서는 컨볼루션 신경망을 이용해 좌측 수골의 발달 수준을 예측하고 소아청소년의 최대신장예측에 활용되는 딥러닝을 이용한 TW3 알고리즘을 제안한다.

Keywords

References

  1. Y. J. Kim and E. G. Kim, "Image based Fire Detection using Convolutional Neural Network," Journal of the Korea Institute of Information and Communication Engineering, vol. 20, no. 9, pp. 1649-1656, Sep. 2016. https://doi.org/10.6109/JKIICE.2016.20.9.1649
  2. H. M. Sim and P. Ishvi, "Analysis of an Axial T2 Weighted Brain MRI," Asia-pacific Journal of Convergent Research Interchange, vol. 3, no. 1, pp. 45-55, Mar. 2017.
  3. Z. Yan, Y. Zhan, Z. Peng, S. Liao, Y. Shinagawa, S. Zhang, D. N. Metaxas and X. S. Zhou, "Multi-instance deep learning," IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1332-1343, May. 2016. https://doi.org/10.1109/TMI.2016.2524985
  4. M. V. Grinsven, B. V. Ginneken, C. Hoyng, T. Theelen and C. Sanchez, "Fast convolution neural network training using selective data sampling," IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1273-1284, May. 2016. https://doi.org/10.1109/TMI.2016.2526689
  5. J. W. Kim, H. A. Pyo, J. W. Ha, C. K. Lee and J. H. Kim, "Deep learning algorithms and applications," Communications of the Korean Institute of Information Scientists and Engineer, vol. 33, no. 8, pp. 25-31, Aug. 2015.
  6. H. K Lee, S. Tajmir, J. Lee, M. Zissen, B. A. Yeshiwas, T. K. Alkasab, G. Choy and S. H Do. "Fully automated deep learning system for bone age assessment," Springer Journal of Digital Imaging, vol. 30, no. 4, pp. 427-441, Aug. 2017. https://doi.org/10.1007/s10278-017-9955-8
  7. J. W. Min and D. J. Kang, "Deep Meta Learning Based Classification Problem Learning Method for Skeletal Maturity Indication," Journal of Korea Multimedia Society, vol. 21, no. 2, pp. 98-107, Feb. 2018. https://doi.org/10.9717/KMMS.2018.21.2.098
  8. Y. B. Cho and S. H. Woo, "Algorithm for Extract Region of Interest Using Fast Binary Image Processing," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 4, pp. 634-640, Apr. 2018. https://doi.org/10.6109/JKIICE.2018.22.4.634
  9. S. C. Lim, S. H. Kim, Y. H. Kim and D. Y. Kim, "Training Network Design Based on Convolution Neural Network for Object Classification in few class problem," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 1, pp. 144-150, Jan. 2017. https://doi.org/10.6109/jkiice.2017.21.1.144
  10. H. K. Lim, J. Y. Kim and H. K. Jung, "Convolutional Neural Network Based Image Processing System," Journal of the Korea Institute of Information and Communication Engineering, vol. 16, no. 3, pp. 160-165, Sep. 2018.
  11. J. M. Tanner, M. J. R. Healy, H. Goldstein, N. Cameron, Assesment of skeletal maturity and prediction of adult height(TW3 method), 3rd ed. Panmun books, pp. 1-21, 2015.
  12. J. S. Oh, "Finger Counting Algorithm in the Hand with Stuck Fingers," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 10, pp. 1892-1897, Oct. 2017. https://doi.org/10.6109/JKIICE.2017.21.10.1892