DOI QR코드

DOI QR Code

낙동강 신규조성 습지의 어류 분포와 종다양성 증진을 위한 관리방안

Fish Distribution and Management Strategy for Improve Biodiversity in Created Wetlands Located at Nakdong River Basin

  • 최종윤 (국립생태원 생태평가연구실) ;
  • 김성기 (국립생태원 생태평가연구실) ;
  • 박정수 (국립생태원 생태평가연구실) ;
  • 김정철 (국립생태원 생태평가연구실) ;
  • 윤종학 (국립생태원 생태평가연구실)
  • Choi, Jong Yun (Division of Ecological Assessment, National Institute of Ecology) ;
  • Kim, Seong-Ki (Division of Ecological Assessment, National Institute of Ecology) ;
  • Park, Jung-Soo (Division of Ecological Assessment, National Institute of Ecology) ;
  • Kim, Jeong-Cheol (Division of Ecological Assessment, National Institute of Ecology) ;
  • Yoon, Jong-Hak (Division of Ecological Assessment, National Institute of Ecology)
  • 투고 : 2018.04.02
  • 심사 : 2018.06.14
  • 발행 : 2018.06.30

초록

낙동강 유역에 조성된 신규습지에서 서식환경에 대한 어류의 분포 특성을 평가하고, 이를 기반으로 한 관리방안 도출을 위해 42개 습지에서 환경요인의 측정과 어류 조사를 시행하였다. 조사 기간 동안 총 30종의 어류가 출현하였으며, 이 중에서 배스(Micropterus salmoides)와 블루길(Lepomis macrochirus)과 같은 외래어종의 비율이 상대적으로 높았다. 특히, 밀어(Rhinogobius brunneus)나 끄리(Opsariichthys uncirostris amurensis), 피라미(Zacco platypus) 등의 어류는 흐름이 있는 환경을 선호하기 때문에 배스가 우점하는 습지(정체수역)에서 상대적으로 낮은 밀도를 가지는 것으로 사료된다. SOM (Self-Organizing Map)을 활용한 패턴분석 결과, 각 습지의 서식환경 특성에 따라 어류 종의 출현빈도가 상이한 것으로 분석되었다. 어류 종의 분포는 각 습지의 수심 변화와 수생식물 피도에 민감하게 영향 받는 것으로 나타났으며, 수온이나 pH, 용존산소 등의 이화학적 요인 변화에 대한 영향은 적었다. 특히 수생식물의 피도는 어류의 종다양성이나 밀도에 강한 영향을 주는 것으로 분석되었으며, 수변식생이 부족한 습지에서는 어류가 적은 풍부도와 다양성을 가지는 것으로 나타났다. 본 연구 결과를 기반으로 평가할 때 어류 등의 생물다양성 증진을 위해 호안사면의 높은 인공성이나 수변식생의 부족한 습지 등은 개선이 필요할 것으로 사료되며, 건강성 확보를 위한 지속가능한 관리방안이 마련되어야 할 것으로 판단된다.

This study investigated the environmental factors and fish assemblage in 42 wetlands between spring and autumn of 2017 to evaluate the fish distribution and deduce the management strategy for improving biodiversity in created wetlands located at the Nakdong River basin. The investigation identified a total of 30 fish species and found that the most of wetlands were dominated by exotic fishes such as Micropterus salmoides and Lepomis macrochirus. Fish species such as Rhinogobius brunneus, Opsariichthys uncirostris amurensis, Zacco platypus were less abundant in the area with high density of Micropterus salmoides (static area) because they preferred the environment with active water flow. The pattern analysis of fish distribution in each wetland using the self-organizing map (SOM) showed a total of 24 variables (14 fish species and 10 environmental variables). The comparison of variables indicated that the distribution of fish species varied according to water depth and plant cover rate and was less affected by water temperature, pH, and dissolved oxygen. The plant cover rate was strongly associated with high fish density and species diversity. However, wetlands with low plant biomass had diversity and density of fish species. The results showed that the microhabitat structure, created by macrophytes, was an important factor in determining the diversity and abundance of fish communities because the different species compositions of macrophytes supported diverse fish species in these habitats. Based on the results of this study, we conclude that macrophytes are the key components of lentic freshwater ecosystem heterogeneity, and the inclusion of diverse plant species in wetland construction or restoration schemes will result in ecologically healthy food webs.

키워드

참고문헌

  1. Allan, J.D.(1976) Life history patterns in zooplankton. Am. Nat. 110(971): 165-180. https://doi.org/10.1086/283056
  2. An, K.G., D.H. Yeom and S.K. Sung(2001) Rapid Bioassessments of Kap Stream using the index of biological integrity. Korean J. Environ. Biol. 19: 261-269. (in Korean with English abstract)
  3. An, K.G. and S.I. Shin(2005) Influence of the asian monsoon on seasonal fluctuations of water quality in a mountainous stream. Korean J. Limnol. 38: 54-62. (in Korean with English abstract)
  4. Azuma, M. and Y. Motomura(1998) Feeding habits of largemouth bass in a non-native environment: the case of a small lake with bluegill in Japan. Environ. Biol. Fishes 52: 379-389. https://doi.org/10.1023/A:1007476104352
  5. Bookhagen, B. and D.W. Burbank(2010). Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. Earth Surf. 115(F3).
  6. Brinson, M.M., A.E. Lugo and S. Brown(1981) Primary productivity, decomposition and consumer activity in freshwater wetlands. Annu. Rev. Ecol. Syst. 12: 123-161. https://doi.org/10.1146/annurev.es.12.110181.001011
  7. Burks, R.L., D.M. Lodge, E. Jeppesen and T.L. Lauridsen(2002) Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biol. 47: 343-365. https://doi.org/10.1046/j.1365-2427.2002.00824.x
  8. Cardinale, B.J., V.J. Brady and T.M. Burton(1998) Changes in the abundance and diversity of coastal wetland fauna from the open water/macrophyte edge towards shore. Wetl. Ecol. Manag. 6: 59-68. https://doi.org/10.1023/A:1008447705647
  9. Castro, B.B., S.M. Marques and F. Goncalves(2007) Habitat selection and diel distribution of the crustacean zooplankton from a shallow Mediterranean lake during the turbid and clear water phases. Freshwater Biol. 52: 421-433. https://doi.org/10.1111/j.1365-2427.2006.01717.x
  10. Cattaneo, A., G. Galanti and S. Gentinetta(1998) Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshwater Biol. 39(4): 725-740. https://doi.org/10.1046/j.1365-2427.1998.00325.x
  11. Cazzanelli, M., T.P. Warming and K.S. Christoffersen(2008) Emergent and floating-leaved macrophytes as refuge for zooplankton in a eutrophic temperate lake without submerged vegetation. Hydrobiologia 605: 113-122. https://doi.org/10.1007/s10750-008-9324-1
  12. Choi, C.M., Y.K. Park and S.G. Moon(2004) Water quality assessment using the periphyton on the artificial substrates in Dae Stream, Busan. Korean J. Environ. Biol. 22: 242-245. (in Korean with English abstract)
  13. Choi, J.Y., K.S. Jeong, G.H. La, S.K. Kim and G.J. Joo(2014) Sustainment of epiphytic microinvertebrate assemblage in relation with different aquatic plant microhabitats in freshwater wetlands(South Korea). Korean J. Limnol. 73: 11-16.
  14. Croft, M.V. and P. Chow-Fraser(2007) Use and development of the wetland macrophyte index to detect water quality impairment in fish habitat of Great Lakes coastal marshes. J. Great Lakes Res. 33: 172-197. https://doi.org/10.3394/0380-1330(2007)33[172:UADOTW]2.0.CO;2
  15. Crowder, L.B. and W.E. Cooper(1982) Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802-1813. https://doi.org/10.2307/1940122
  16. Cyrus, D.P. and S.J.M. Blaber(1992) Turbidity and salinity in a tropical northern Australian estuary and their influence on fish distribution. Estuar. Coast. Shelf Sci. 35: 545-563. https://doi.org/10.1016/S0272-7714(05)80038-1
  17. Findlay, C.S. and J. Bourdages(2000) Response time of wetland biodiversity to road construction on adjacent lands. Conserv. Biol. 14: 86-94. https://doi.org/10.1046/j.1523-1739.2000.99086.x
  18. Forward, R.B.(1988) Diel vertical migration: zooplankton photobiology and behaviour. Oceanogr. Mar. Biol. Annu. Rev. 26: 1-393.
  19. Ha, K., E.A. Cho, H.W. Kim and G.J. Joo(1999) Microcystis bloom formation in the lower Nakdong River, South Korea: importance of hydrodynamics and nutrient loading. Mar. Freshw. Res. 50: 89-94. https://doi.org/10.1071/MF97039
  20. Jeong, K.S., G.J. Joo, H.W. Kim, K. Ha and F. Recknagel(2001) Prediction and elucidation of phytoplankton dynamics in the Nakdong River (Korea) by means of a recurrent artificial neural network. Ecol. Model. 146: 115-129. https://doi.org/10.1016/S0304-3800(01)00300-3
  21. Kang, C.M., S.M. Lee, J.S. Um, J.H. Lee, H.W. Lee and C.P. Hong(2000) The Study on water quality and phytoplankton flora at 3 rivers in the Taejon city. KSET 9: 275-284. (in Korean with English abstract)
  22. Karr, J.R.(1981) Assessment of biotic integrity using fish communities. Fishieries 6: 21-27. https://doi.org/10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2
  23. Kim, H.W. and G.J. Joo(2000) The longitudinal distribution and community dynamics of zooplankton in a regulated large river: a case study of the Nakdong River (Korea). Hydrobiologia 438: 171-184. https://doi.org/10.1023/A:1004185216043
  24. Kim, I.S. and J.Y. Park(2002) Freshwater fishes of Korea. Kyo-Hak Publishing Co. Seoul. (in Korean)
  25. Kohonen, T.(2001) Self-organizing Maps. Springer, Berlin.
  26. Kohonen, T.(2013) Essentials of the self-organizing map. Neural Networks 37: 52-65. https://doi.org/10.1016/j.neunet.2012.09.018
  27. Kuczynska-Kippen, N.M. and B. Nagengast(2006) The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of rotifer and cladoceran communities. Hydrobiologia 559: 203-212. https://doi.org/10.1007/s10750-005-0867-0
  28. Kwak, S.N. and S.H. Huh(2003) Changes in species composition of fishes in the Nakdong River Estuary. Korean J. Fish. Aquat. Sci. 36: 129-135. (in Korean with English abstract)
  29. Lauridsen, T.L. and D.M. Lodge(1996) Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator-mediated use of macrophyte habitat. Limnol. Oceanogr. 41: 794-798. https://doi.org/10.4319/lo.1996.41.4.0794
  30. Lehtinen, R.M., S.M. Galatowitsch and J.R. Tester(1999) Consequences of habitat loss and fragmentation for wetland amphibian assemblages. Wetlands 19: 1-12. https://doi.org/10.1007/BF03161728
  31. Manatunge, J., T. Aseada and T. Priyadarshana(2000) The influence of structural complexity on fish-zooplankton interactions: A study using artificial submerged macrophytes. Environ. Biol. Fishes 58: 425-438. https://doi.org/10.1023/A:1007691425268
  32. McGlathery, K.J.(2001) Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters. J. Phycol. 37: 453-456. https://doi.org/10.1046/j.1529-8817.2001.037004453.x
  33. Meerhoff, M., C. Iglesias, F.T. De Mello, J.M. Clemente, E. Jensen, T.L. Lauridsen and E. Jeppesen(2007) Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biol. 52: 1009-1021. https://doi.org/10.1111/j.1365-2427.2007.01748.x
  34. Michelan, T.S., S. Thomaz, R.P. Mormul and P. Carvalho(2010) Effects of an exotic invasive macrophyte (tropical signalgrass) on native plant community composition, species richness and functional diversity. Freshwater Biol. 55: 1315-1326. https://doi.org/10.1111/j.1365-2427.2009.02355.x
  35. Moyle, P.B., P.K. Crain, K. Whitener and J.F. Mount(2003) Alien fishes in natural streams: fish distribution, assemblage structure, and conservation in the Cosumnes River, California, USA. Environ. Biol. Fishes 68: 143-162. https://doi.org/10.1023/B:EBFI.0000003846.54826.a6
  36. Nelson, J.S.(1994) Fishes of the World(3nd ed.). John Wiley & Sons, New York.
  37. Niehoff, D., U. Fritsch and A. Bronstert(2002) Land-use impacts on storm-runoff generation: scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany. J. Hydrol. 267: 80-93. https://doi.org/10.1016/S0022-1694(02)00142-7
  38. Pankhurst, N.W. and P.L. Munday(2011) Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 62: 1015-1026. https://doi.org/10.1071/MF10269
  39. Park, J.W., M.K. Hwang, S.J. Aw, S.S. Choi and P.R. Chung(2001) Biological evaluation of water quality and community structure of benthic macroinvertebrates in the Pyungchang River water system, Gangwon-do. Korean J. Environ. Biol. 19: 119-128. (in Korean with English abstract)
  40. Park, Y.S., R. Cereghino, A. Compin and S. Lek(2003) Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecol. Modell. 160: 165-280. https://doi.org/10.1016/S0304-3800(02)00354-X
  41. Paukert, C.P. and D.W. Willis(2002) Seasonal and diel habitat selection by bluegills in a shallow natural lake. Trans. Am. Fish. Soc. 131: 1131-1139. https://doi.org/10.1577/1548-8659(2002)131<1131:SADHSB>2.0.CO;2
  42. Pelicice, F.M., A.A. Agostinho and S.M. Thomaz(2005). Fish assemblages associated with Egeria in a tropical reservoir: investigating the effects of plant biomass and diel period. Acta Oecol. 27: 9-16. https://doi.org/10.1016/j.actao.2004.08.004
  43. Seong, C.N., K.S. Baik, J.H. Choi, H.W. Cho and J.H. Kim(1997) Water quality and fish community in streamlets of Juam Reservoir. Korean J. Limnol. 30:107-118. (in Korean with English abstract)
  44. Sodard, S.M. and B.L. Olla(1996) Food deprivation affects vertical distribution and activity of a marine fish in a thermal gradient: potential energy-conserving mechanisms. Mar. Ecol. Prog. Ser. 43-55.
  45. Son, M.W. and Y.G. Jeon(2003) Physical geographical characteristics of natural wetlands on the downstream reach of Nakdong River. JKARG 9: 66-76.
  46. Stanley, E.H., M.D. Johnson and A.K. Ward(2003) Evaluating the influence of macrophytes on algal and bacterial production in multiple habitats of a freshwater wetland. Limnol. Oceanogr. 48: 1101-1111. https://doi.org/10.4319/lo.2003.48.3.1101
  47. Sutton-Grier, A.E. and J.P. Megonigal(2011) Plant species traits regulate methane production in freshwater wetland soils. Soil Biol. Biochem. 43: 413-420. https://doi.org/10.1016/j.soilbio.2010.11.009
  48. Suzuki, R.(1964) Hybridization experiments in cyprinid fishes. VII. Reciprocal crosses between Pseudogobio esocinus and Biwia zezera. JPN J. Ichthyol. 12: 18-22.
  49. Thomaz, S.M. and E.R.D. Cunha(2010) The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages' composition and biodiversity. Acta Limnol. Bras. 22: 218-236. https://doi.org/10.4322/actalb.02202011
  50. US EPA(2002) Summary of biological assessment programs and biocriteria development for states, tribes, territories, and interstate commissions: streams and wadable rivers. EPA-822-R-02-048. U.S. EPA, USA.
  51. Valley, R.D. and M.T. Bremigan(2002). Effects of macrophyte bed architecture on largemouth bass foraging: implications of exotic macrophyte invasions. Trans. Am. Fish. Soc. 131: 234-244. https://doi.org/10.1577/1548-8659(2002)131<0234:EOMBAO>2.0.CO;2
  52. van Donk, E. and W.J. van de Bund(2002) Impact of submerged macrophytes including charophytes on phyto-and zooplankton communities: allelopathy versus other mechanisms. Aquat. Bot. 72: 261-274. https://doi.org/10.1016/S0304-3770(01)00205-4
  53. Verhoeven, J.T.A. and T.L. Setter(1989) Agricultural use of wetlands: opportunities and limitations. Ann. Bot. 105: 155-163.
  54. Warfe, D.M. and L.A. Barmuta(2004) Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141(1): 171-178. https://doi.org/10.1007/s00442-004-1644-x
  55. Wetzel, R.G. and G.E. Likens(2000) Limnological analyses. Springer, New York, 429pp.
  56. Wood, P.J., M.T. Greenwood and M.D. Agnew(2003) Pond biodiversity and habitat loss in the UK. Area 35: 206-216. https://doi.org/10.1111/1475-4762.00249
  57. Zhu, G.B., S.Y. Wang, X.J. Feng, G.N. Fan, M.S.M. Jetten and C.Q. Yin(2011) Anammox bacterial abundance, biodiversity and activity in a constructed wetland. Environ. Sci. Technol. 45: 9951-9958. https://doi.org/10.1021/es202183w
  58. Zollner, E., B. Santer, M. Boersma, H.G. Hoppe and K. Jurgens(2003) Cascading predation effects of Daphnia and copepods on microbial food web components. Freshwater Biol. 48: 2174-2193. https://doi.org/10.1046/j.1365-2426.2003.01158.x