DOI QR코드

DOI QR Code

유기고분자로 표면 개질 된 입상활성탄을 이용한 프러시안 블루 고정화 및 Cs+ 제거

Covalent organic polymer grafted on granular activated carbon surface to immobilize Prussian blue for Cs+ removal

  • 서영교 (서울과학기술대학교 환경공학과) ;
  • 오대민 (한국건설기술연구원 환경플랜트연구소) ;
  • 황유훈 (서울과학기술대학교 환경공학과)
  • Seo, Younggyo (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Oh, Daemin (Environmental and Plant Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Hwang, Yuhoon (Department of Environmental Engineering, Seoul National University of Science and Technology)
  • 투고 : 2018.07.29
  • 심사 : 2018.09.28
  • 발행 : 2018.10.15

초록

Prussian blue is known as a superior material for selective adsorption of radioactive cesium ions; however, the separation of Prussian blue from aqueous suspension, due to particle size of around several tens of nanometers, is a hurdle that must be overcome. Therefore, this study aims to develop granule type adsorbent material containing Prussian blue in order to selectively adsorb and remove radioactive cesium in water. The surface of granular activated carbon was grafted using a covalent organic polymer (COP-19) in order to enhance Prussian blue immobilization. To maximize the degree of immobilization and minimize subsequent detachment of Prussian blue, several immobilization pathways were evaluated. As a result, the highest cesium adsorption performance was achieved when Prussian blue was synthesized in-situ without solid-liquid separation step during synthesis. The sample obtained under optimal conditions was further analyzed by scanning electron microscope-energy dispersive spectrometry, and it was confirmed that Prussian blue, which is about 9.7% of the total weight, was fixed on the surface of the activated carbon; this level of fixing represented a two-fold improvement compared to before COP-19 modification. In addition, an elution test was carried out to evaluate the stability of Prussian blue. Leaching of Prussian blue and cesium decreased by 1/2 and 1/3, respectively, compared to those levels before modification, showing increased stability due to COP-19 grafting. The Prussian blue based adsorbent material developed in this study is expected to be useful as a decontamination material to mitigate the release of radioactive materials.

키워드

참고문헌

  1. Ahn, J.P. and Lee, M.H. (2018). Sorption efficiency of the bamboo charcoal to remove the cesium in the contaminated water system, Econ. Environ. Geol., 51(2), 87-97. https://doi.org/10.9719/EEG.2018.51.2.87
  2. Alamudy, H.A. (2018). Higher selectivity of cesium removal from aqueous solution by adsorption on montmorillonite-Prussian blue hybrid, Pusan National University, Busan, Korea.
  3. Alamudy, H.A. and Cho, K. (2018). Selective adsorption of cesium from an aqueous solution by a montmorilloniteprussian blue hybrid, Chem. Eng. J., 349, 595-602. https://doi.org/10.1016/j.cej.2018.05.137
  4. Cho, B.O., Kim, S.J. and Kim, J.S. (2010). An analysis on korean nuclear power's contribution to the GHG emission reduction and the economic effect, Korea Soc. Energy Eng., 19(4), 203-214.
  5. Dechojarassri, D., Asaina, S., Omote, S., Nishida, K., Furuike, T., and Tamura, H. (2017). Adsorption and desorption behaviors of cesium on rayon fibers coated with chitosan immobilized with prussian blue, Int. J. Biol. Macromol., 104, 1509-1516. https://doi.org/10.1016/j.ijbiomac.2017.03.056
  6. Ding, D., Zhang, Z., Chen, R., and Cai, T. (2017). Selective removal of cesium by ammonium molybdophosphate -polyacrylonitrile bead and membrane, J. Hazard. Mater., 324, 753-761. https://doi.org/10.1016/j.jhazmat.2016.11.054
  7. Ding, S., Yang, Y., Li C., Huang, H., and Hou, L. (2016). The effects of organic fouling on the removal of radionuclides by reverse osmosis membranes, Water Res., 95, 174-184. https://doi.org/10.1016/j.watres.2016.03.028
  8. Faustino, P.J., Yang, Y., Progar, J.J., Brownell, C.R., Sadrieh, N.K., May, J., Leutzinger, E.E., Place, D.C., Duffy, E., Houn, F., Loewke, S.A., Mecozzi, V.J., Ellison, C.D., Khan, M.A., Hussain, A.S., and Lyon, R.C. (2008). Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue, J. Pharmaceut. Biomed., 47(1), 114-125. https://doi.org/10.1016/j.jpba.2007.11.049
  9. Fuller, A.J., Shaw, S., Ward, M.B., Haigh, S.J., Mosselmans, J.F.W., Peacock, C.L., Stackhouse, S., Dent, A.J., Trivedi, D., and Burke, I.T., (2015). Caesium incorporation and retention in illite interlayers, Appl. Clay Sci., 108, 128-134. https://doi.org/10.1016/j.clay.2015.02.008
  10. Hu, B., Fugetsu, B., Yu, H., and Abe, Y. (2012). Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium, J. Hazard. Mater., 217-218, 85-91. https://doi.org/10.1016/j.jhazmat.2012.02.071
  11. Hwang, J.H., Choung, S.W., Park, C.S., Han, J.H. and Jeon, S.D. (2016). Application of Yeongdong illite to remove radiocesium for severe nuclear accidents, J. Miner. Soc. Korea, 29(4), 229-238. https://doi.org/10.9727/jmsk.2016.29.4.229
  12. International atomic energy agency (IAEA). (2017). Nuclear power reactors in the world, IAEA-RDS-2/37(2).
  13. Ishizaki, M, Akiba S, Ohtani, A, Hoshi, Y, Ono, K, Matsuba, M, Togashi, T, Kananizuka, K, Sakamoto, M, Takahashi, A, Kawamoto, T, Tanaka, H, Watanabe, M, Arisaka, M, Nankawa, T, and Kurihara, M. (2013). Proton-exchange mechanism of specific $cs^+$ adsorption via lattice defect sites of prussian blue filled with coordination and crystallization water molecules, Dalton Trans., 42, 16049-16055. https://doi.org/10.1039/c3dt51637g
  14. Jeong, W.C., Yeo, W.S., Lee, B.R. and Kim, J.K. (2017). Trend and improvement of water treatment technology for cesium treatment in water, KSWST J. Water Treat., 25(5), 99-114.
  15. Kadam, A.A., Jang, J., and Lee, D.S. (2016). Facile synthesis of pectin-stabilized magnetic graphene oxide prussian blue nanocomposites for selective cesium removal from aqueous solution, Bioresour. Technol., 216, 391-398. https://doi.org/10.1016/j.biortech.2016.05.103
  16. Kang, B., Chang, Y., Lee, D., Chen, M., and Lo, Y. (2018). Poly (methyl methacrylate) matrix with immobilized prussian blue for cesium removal from waters, J. Taiwan. Inst. Chem. Eng., 84, 142-148. https://doi.org/10.1016/j.jtice.2018.01.012
  17. Kim, H., Kim, M., Lee, W., and Kim, S. (2018). Rapid removal of radioactive cesium by polyacrylonitrile nanofibers containing prussian blue, J. Hazard. Mater., 347, 106-113. https://doi.org/10.1016/j.jhazmat.2017.12.050
  18. Kim, H.S., Park, W.K., Lee, H.Y. and Park, J.S. (2014). Characterization of natural zeolite for removal of radioactive nuclides, J. Miner. Soc. Korea, 27(1), 41-51. https://doi.org/10.9727/jmsk.2014.27.1.41
  19. Korea Energy Information Culture Agency, Domestic nuclear power plant status. (2016). http://www.keia.or.kr/information/01.php?admin_mode=read&no=55&make=title&search=%EA%B5%AD%EB%82%B4&selecVal=5 (July 6, 2018).
  20. Lai, Y., Chang, Y., Chen, M., Lo, Y., Lai, J., and Lee, D. (2016). Poly(vinyl alcohol) and alginate cross-linked matrix with immobilized prussian blue and ion exchange resin for cesium removal from waters, Bioresour. Technol., 214, 192-198. https://doi.org/10.1016/j.biortech.2016.04.096
  21. Lee, C.H. (2013). External costs of nuclear energy in Korea, 2013-06, 534-684.
  22. Lee, K., Kim, K., Park, M., Kim, J., Oh, M., Lee, E., Chung, D., and Moon, J. (2016). Novel application of nanozeolite for radioactive cesium removal from high-salt wastewater, Water Res., 95, 134-141. https://doi.org/10.1016/j.watres.2016.02.052
  23. Mahendra, C., Sathya Sai, P.M., Anand Babu, C., and Rajan, K.K. (2015). Analysis and modeling of fixed bed sorption of cesium by AMP-PAN, J. Environ. Chem. Eng., 3(3), 1546-1554. https://doi.org/10.1016/j.jece.2015.05.002
  24. Mines, P.D., Thirion, D., Uthuppu, B., Hwang, Y., Jakobsen, M.H., Andersen, H.R., and Yavuz, C.T. (2017). Covalent organic polymer functionalization of activated carbon surfaces through acyl chloride for environmental clean-up, Chem. Eng. J., 309, 766-771. https://doi.org/10.1016/j.cej.2016.10.085
  25. Mines, P.D., Uthuppu, B., Thirion, D., Jakobsen, M.H., Yavuz, C.T., Andersen, H.R., and Hwang, Y. (2018). Granular activated carbon with grafted nanoporous polymer enhances nanoscale zero-valent iron impregnation and water contaminant removal, Chem. Eng. J., 339, 22-31. https://doi.org/10.1016/j.cej.2018.01.102
  26. Montana, M., Camacho, A., Serrano, I., Devesa, R., Matia, L., and Valles, I. (2013). Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal, J. Environ. Radioactiv., 125, 86-92. https://doi.org/10.1016/j.jenvrad.2013.01.010
  27. Wu, J., Li, B., Liao, J., Feng, Y., Zhang, D., Zhao, J., Wen, W., Yang Y., and Liu, N. (2009). Behavior and analysis of cesium adsorption on montmorillonite mineral, J. Environ. Radioactiv., 100(10), 914-920. https://doi.org/10.1016/j.jenvrad.2009.06.024
  28. Yang, H., Jang, S., Hong, S.B., Lee, K., Roh, C., Huh, Y.S., and Seo, B. (2016). Prussian blue-functionalized magnetic nanoclusters for the removal of radioactive cesium from water, J. Alloy. Compd., 657, 387-393. https://doi.org/10.1016/j.jallcom.2015.10.068

피인용 문헌

  1. 프러시안 블루 고정화에 따른 133Cs의 흡착거동 모델링 vol.36, pp.1, 2018, https://doi.org/10.14346/jkosos.2021.36.1.80