DOI QR코드

DOI QR Code

Measurement of minimum line width of an object fabricated by metal 3D printer using powder bed fusion type with stainless steal powder

스테인리스강을 사용한 분말 적층 용융 방식의 금속 3차원 프린터에서 제작된 물체의 최소 선폭 측정

  • Son, BongKuk (Department of Photonics and Sensors, Hannam University) ;
  • Jeong, Youn Hong (Department of Optometry, Kookje University) ;
  • Jo, Jae Heung (Department of Photonics and Sensors, Hannam University)
  • 손봉국 (한남대학교 공과대학 광.센서공학과) ;
  • 정연홍 (국제대학교 안경광학과) ;
  • 조재흥 (한남대학교 공과대학 광.센서공학과)
  • Received : 2018.07.24
  • Accepted : 2018.10.05
  • Published : 2018.10.31

Abstract

Metal three-dimensional (3D) printing technologies are mainly classified as powder bed fusion (PBF) and direct energy deposition (DED) methods according to the method of application of a laser beam to metallic powder. The DED method can be used to fabricate fine and hard 3D metallic structures by applying a strong laser beam to a thin layer of metallic powder. The PBF method involves slicing 3D graphics to be a certain height, laminating metal powders, and making a 3D structure using a laser. While the DED method has advantages such as laser cladding and metallic welding, it causes problems with low density when 3D shapes are created. The PBF method was introduced to address the structural density issues in the DED method and makes it easier to produce relatively dense 3D structures. In this paper, thin lines were produced by using PBF 3D printers with stainless-steel powder of roughly $30{\mu}m$ in diameter with a galvano scanner and fiber-transferred Nd:YAG laser beam. Experiments were carried out to find the optimal conditions for the width of a line depending on the processing times, laser power, spot size, and scan speed. The optimal conditions were two scanning processes in one line structure with a laser power of 30 W, spot size of $28.7{\mu}m$, and scan speed of 200 mm/s. With these conditions, a minimum width of about $85.3{\mu}m$ was obtained.

금속 3D 프린팅 기술은 레이저 빔의 초점에 금속분말을 주입하는 방식에 따라 대표적으로 PBF(Powder Bed Fusion)방식과 DED(Direct Energy Deposition)방식으로 나뉜다. DED 방식은 금속 분말 도포와 동시에 레이저를 조사하여 3차원 구조물을 제작하는 금속 3D 프린팅 기술이고, PBF 방식은 일정 높이로 3차원 그래픽을 슬라이싱 한 후 한 층씩 금속 분말을 적층하여 레이저를 이용해 3차원 구조물을 제조하는 방식이다. DED 방식을 사용하면 레이저 클래딩, 금속 용접 등에는 강점을 가지지만 3D 형상을 제작할 경우 밀도가 낮아지는 문제점이 발생한다. DED 방식에서의 구조체 밀도 문제를 해결하기 위해 PBF 방식을 도입하면 상대적으로 밀도가 높은 3차원 구조물을 제작하는데 용이하다. 본 논문에서는 갈바노 스캐너와 광섬유로 전송되는 Nd:YAG 레이저 빔을 이용한 약 $30{\mu}m$ 크기의 스테인리스 강 분말을 이용하는 PBF 방식의 3차원 프린터를 제작하고, 이를 이용하여 얇은 금속 구조물을 제작하였다. 또한 레이저의 조사 횟수, 출력, 초점 크기, 스캐닝 속도에 따른 선폭의 최적조건을 찾았으며, 그 결과 최적 조건은 레이저 조사 횟수 2회, 출력 30 W, 초점 크기 $28.7{\mu}m$, 스캐닝 속도 200 mm/s에서 최소 선폭은 약 $85.3{\mu}m$로 측정되었다.

Keywords

References

  1. K. W. Dalgarno, J. H. Pallari, J. woodburn, K. Xiao, D. J. Wood, R. D. Goodridge & C.Ohtsuki, "Mass customization of medical devices and implants: state of the art and future directions," Virtual and Physical Prototyping, Vol. 1, No. 3, pp. 137-145, September, 2006. DOI: https://doi.org/10.1080/17452750601092031
  2. Ian Gibson, David Rosen, Brent Stucker, "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing Second Edition," pp. 35, 107-146, 245-268, Springer, 2015
  3. Zhuqing Wang, Todd A. Palmer, Allison M. Beese, "Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing," Acta Meterialia, 110, pp. 226-235, 2016. DOI: https://doi.org/10.1016/j.actamat.2016.03.019
  4. Young Jin An, Sungwoo Bae, Dong Soo Kim, Jae Yeol Kim, "Study on the Development and Sintering Process Characteristics of powder Bed Fusion System," J. Korean Soc. Precis. Eng., Vol. 32, No. 9, pp. 773-779 DOI: https://doi.org/10.7736/KSPE.2015.32.9.773
  5. Haijun Gong, Khalid Rafi, Hengfeng Gu, Thomas Starr, Brent Stucker, "Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes," Additive Manufacturing, 1, 87-98. 2014 DOI:https://doi.org/10.1016/j.addma.2014.08.002
  6. Gu, D. D., Meiners, W., Wissenbach, K., & Poprawe. R, "Laser additive manufacturing of metallic components: Materials, processes and mechanisms," International Materials Reviews, 57(3), 133-164. 2012 DOI: https://doi.org/10.1179/1743280411Y.0000000014
  7. Harish Irrinki, John Samuel Dilip Jangam, Somayeh Pasebani, Sunil Badwe, Jason Stitzel, Kunal Kate, Ozkan Gulsoy, Sundar V. Atre, "Effects of particle characteristics on the microstructure and mechanical properties of 17-4 PH stainless steel fabricated by laser-powder bed fusion," Powder Technology, pp. 331, 192-203, 2018. DOI: https://doi.org/10.1016/j.powtec.2018.03.025
  8. Jong-Cheon Yoon, Min-Gyu Lee, Chang-Young Choi, Dong-Hyuk Kim, Myeong-Sik Jeong, Youg-Jin Choi, Da-Hye Kim, "Evaluation of Microstructure and Mechanical Properties in 17-4PH Stainless Steels Fabricated by PBF and DED Processes," Journal of the Korean Society of Manufacturing Process Engineers, Vol. 17, No. 2, pp. 83-88, 2018 DOI: https://doi.org/10.14775/ksmpe.2018.17.2.083
  9. Panagiotis Kazanas, Preetam Deherkar, Pedro Almeida, Helen Lockett, Stewart Williams, "Fabrication of geometrical features using wire and arc additive manufacture," Journal of ENGINEERING MANUFACTURE, 1-10, 2012 DOI: https://doi.org/10.1177/0954405412437126
  10. Xuezhi Shi, Shuyuan Ma, Changmeng Liu, Cheng Chen, Qianru Wu, Xianping Chen, Jiping Lu, "Performance of High Layer Thickness in Selective Laser Melting of Ti6Al4V," Materials 2016, 9, 975. DOI: https://doi.org/10.3390/ma9120975