DOI QR코드

DOI QR Code

The Influence of Oxygen Gas Flow Rate on Growth of Tin Dioxide Nanostructures

이산화주석 나노구조물의 성장에서 산소가스 유량이 미치는 영향

  • Kim, Jong-Il (Department of Advanced Chemical Engineering, Mokwon University) ;
  • Kim, Ki-Chul (Department of Advanced Chemical Engineering, Mokwon University)
  • 김종일 (목원대학교 신소재화학공학과) ;
  • 김기출 (목원대학교 신소재화학공학과)
  • Received : 2018.07.09
  • Accepted : 2018.10.05
  • Published : 2018.10.31

Abstract

Tin dioxide, $SnO_2$, is applied as an anode material in Li-ion batteries and a gas sensing materials, which shows changes in resistance in the presence of gas molecules, such as $H_2$, NO, $NO_2$ etc. Considerable research has been done on the synthesis of $SnO_2$ nanostructures. Nanomaterials exhibit a high surface to volume ratio, which means it has an advantage in sensing gas molecules and improving the specific capacity of Li-ion batteries. In this study, $SnO_2$ nanostructures were grown on a Si substrate using a thermal CVD process with the vapor transport method. The carrier gas was mixed with high purity Ar gas and oxygen gas. The crystalline phase of the as-grown tin oxide nanostructures was affected by the oxygen gas flow rate. The crystallographic property of the as-grown tin oxide nanostructures were investigated by Raman spectroscopy and XRD. The morphology of the as-grown tin oxide nanostructures was confirmed by scanning electron microscopy. As a result, the $SnO_2$ nanostructures were grown directly on Si wafers with moderate thickness and a nanodot surface morphology for a carrier gas mixture ratio of Ar gas 1000 SCCM : $O_2$ gas 10 SCCM.

이산화주석은 리튬 이온 전지의 Anode 전극물질, 또는 $H_2$, NO, $NO_2$ 등의 가스 분자가 표면에 흡착되면 전기저항이 변하는 특성을 이용하여 가스센서로 활용되고 있으며, 나노구조를 갖는 이산화주석의 합성과 관련하여 많은 연구가 활발하게 이루어지고 있다. 나노구조물의 경우 Bulk 상태보다 체적 대비 표면적비가 높기 때문에 기체분자의 흡착확률을 높일 수 있으므로 고감도 가스 센서의 구현이 가능하고, Li-ion 이차전지의 경우에도 비정전용량을 향상시킬 수 있다. 본 연구에서는 열화학기상증착 장비를 이용하여 기상수송방법으로 $SnO_2$ 나노구조물을 Si 기판 위에 직접 성장시켰다. 이때 이송가스로 이용되는 고순도 Ar 가스에 고순도 산소가스를 혼합하였고, 산소가스의 혼합량에 따라 다른 형태의 산화주석 나노구조물이 성장되는 것을 확인하였다. 기상수송방법으로 성장된 산화주석 나노구조물의 결정학적 특성은 Raman 분광학 및 XRD 분석을 통하여 확인하였고, 표면형상을 주사전자현미경을 통하여 확인하였다. 분석결과 산화주석 나노구조물은 산소가스 혼합량에 민감하게 영향을 받았으며, 이송가스로 이용되는 고순도 Ar 1000 SCCM에 고순도 산소가스 10 SCCM을 혼합하였을 때, 적당한 두께를 가지면서 Nanodots 형태의 표면형상을 갖는 $SnO_2$ 결정상의 나노구조물이 성장되는 것을 확인하였다.

Keywords

References

  1. J. H. Kim, K. M. Jeon, J. S. Park, Y. C. Kang, "Excellent Li-ion storage performances of hierarchical SnO-$SnO_{2}$ composite powders and SnO nanoplates prepared by one-pot spray pyrolysis", Journal of Power Sources, Vol.359, pp.363-370, 2017. DOI: https://dx.doi.org/10.1016/j.jpowsour.2017.05.105
  2. J. H. Shin, J. Y. Song, "Electrochemical properties of Sn-decorated SnO nanobranches as an anode of Li-ion battery", Nano Convergence, Vol.3, No.1, Aritlcle ID 9, 2016. DOI: https://dx.doi.org/10.1186/s40580-016-0070-1
  3. L. Zhang, H. B. Wu, X. W. Lou, "Growth of $SnO_{2}$ nanosheet arrays on various conductive substrates as integrated electrode for lithium-ion batteries", Materials Horizons, Vol.1, pp.133-138, 2014. DOI: https://dx.doi.org/10.1039/C3MH00077J
  4. S. Maeng, S. W. Kim, D. H. Lee, S. E. Moon, K. C. Kim, A. Maiti, "$SnO_{2}$ Nanoslab as $NO_{2}$ Sensor: Identification of the $NO_{2}$ Sensing Mechanism on a $SnO_{2}$ Surface", ACS Applied Materials and Interfaces, Vol.6, No.1, pp.357-363, 2014. DOI: https://dx.doi.org/10.1021/am404397f
  5. L. Mei, Y. Chen. J. Ma, "Gas Sensing of $NO_{2}$ Nanocrystals Revisited: Developing Ultra-Sensitive Sensors for Detecting the $H_{2}S$ Leakage of Biogas", Scientific Reports, Vol.4, Article No.6028, 2014. DOI: https://dx.doi.org/10.1038/srep06028
  6. Y. Deng, C. Fang, G. Chen, "The developments of $SnO_{2}$/graphene nanocomposites as anode materials for high performance lithium ion batteries: A review", Journal of Power Sources, Vol.304, pp.81-101, 2016. DOI: https://dx.doi.org/10.1016/j.jpowsour.2015.11.017
  7. Y. Yang, X. Zhao, H. E. Wang, M. Li, C. Hao, M. Ji, S. Ren, G. Cao, "Phosphorized $SnO_{2}$/graphene heterostructures for highly reversible lithium-ion storage with enhanced pseudocapacitance", Journal of Materials Chemistry A, Vol.6, No.8, pp.3479-3487, 2018. DOI: https://dx.doi.org/10.1039/C7TA10435A
  8. G. H. Jeong, S. Baek, S. Lee, S. W. Kim, "Metal Oxide/Graphene Composites for Supercapacitive Electrode Materials", Chemistry An Asian Journal, Vol.11, No.7, pp.949-964, 2016. DOI: https://dx.doi.org/10.1002/asia.201501072
  9. S. G. Chatterjee, S. Chatterjee, A. K. Ray, A. K. Chakraborty, "Graphene-metal oxide nanohybrids for toxic gas sensor: A review", Sensors and Actuators B: Chemical, Vol.221, pp.1170-1181, 2015. DOI: https://dx.doi.org/10.1016/j.snb.2015.07.070
  10. Z. R. Dai, Z. W. Pan, Z. L. Wang, "Growth and Structure Evolution of Novel Tin Oxide Diskettes", Journal of American Chemical Society, Vol.124, No.29, pp.8673-8680, 2002. DOI: https://dx.doi.org/10.1021/ja026262d
  11. Y. Wang, M. Guo, M. Zhang, X. Wang, "Hydrothermal synthesis of $SnO_{2}$ nanoflower arrays and their optical properties", Scripta Materialia, Vol.61, No.3, pp.234-236, 2009. DOI: https://dx.doi.org/10.1016/j.scriptamat.2009.03.040
  12. X. Zhou, W. Fu, H. Yang, Y. Mu, J. Ma, L. Tian, B. Zhao, M. Li, "Facile fabrication of transparent $SnO_{2}$ nanorod array and their photoelectrochemical properties", Materials Letters, Vol.93, pp.95-98, 2013. DOI: https://dx.doi.org/10.1016/j.matlet.2012.11.050
  13. A. Ayeshamariam, C. Sanjeeviraja, R. Perumal Samy, "Synthesis, Structural and Optical Characterizations of $SnO_{2}$ Nanoparticles", Journal on Photonics and Spintronics, Vol.2, No.2, pp.4-8, 2013.
  14. Y. Cheng, R. Yang, J. P. Zheng, Z. L. Wang, P. Xiong, "Characterizing individual $SnO_{2}$ nanobelt field-effect transistors and their intrinsic responses to hydrogen and ambient gases", Materials Chemistry and Physics, Vol.137, No.1, pp.372-380, 2012. DOI: https://dx.doi.org/10.1016/j.matchemphys.2012.09.037
  15. M. A. Baker, H. Fakhouri, R. Grilli, J. Pulpytel, W. Smith, F. Arefi-Khonsari, "Effect of total gas pressure and $O_{2}/N_{2}$ flow rate on the nanostructure of N-doped $TiO_{2}$ thin films deposited by reactive sputtering", Thin Solid Films, Vol.552, pp.10-17, 2014. DOI: https://dx.doi.org/10.1016/j.tsf.2013.11.111
  16. Y. M. Lu, J. Jiang, C. Xia, B. Kramm, A. Polity, Y. B. He, P. J. Klar, B. K. Meyer, "The influence of oxygen flow rate on properties of $SnO_{2}$ thin films grown epitaxially on c-sapphire by chemical vapor deposition", Thin Solid Films, Vol.594, Part B, pp.270-276, 2015. DOI: https://dx.doi.org/10.1016/j.tsf.2015.04.010
  17. Y. Abe, Y. Kaga, M. Kawamura, K. Sasaki, "Effects of $O_{2}$ gas flow ratio and flow rate on the formation of $RuO_{2}$ thin films by reactive sputtering", Journal of Vaccum Science & Technology B, Vol.18, pp.1348-1351, 2000. DOI: https://dx.doi.org/10.1116/1.591385
  18. A. C. Iniguez, R. R. Campomanes, M. H. Tabacnics, D. Comedi, "Influence of $O_{2}$ flow rate on growth rate, composition and structure of RF-Sputtered $TiO_{x}$ films", Revista Brasileira de Aplicacoes de Vacuo, Vol.22, No.1, pp.22-24, 2003.