DOI QR코드

DOI QR Code

Approximate Shear Strength Formula Implied in the Generalized Hoek-Brown Failure Criterion

일반화된 Hoek-Brown 파괴조건식에 내포된 전단강도 근사식

  • Lee, Youn-Kyou (Department of Coastal Construction Engineering, Kunsan National University)
  • 이연규 (군산대학교 건축.해양건설융합공학부)
  • Received : 2018.09.10
  • Accepted : 2018.10.01
  • Published : 2018.10.31

Abstract

Recently, the generalized Hoek-Brown (GHB) failure criterion has been actively employed in various rock engineering calculations, but the analytical form of the corresponding Mohr failure envelope is not available, making it difficult to extend the application of the GHB criterion. In order to overcome this disadvantage, this study proposes a new method to express the tangential friction angle as an explicit function of normal stress by invoking the polynomial best-fitting to the relationship between normal stress and tangent friction angle implied in the GHB failure function. If this normal stress - tangential friction angle relationship is best-fitted with linear or quadratic polynomial function, it is possible to find the analytical root for tangential friction angle. Subsequently, incorporating the root into the relationship between shear stress and tangential friction angle accomplishes the derivation of the approximate Mohr envelope for the GHB criterion. It is demonstrated that the derived approximate Mohr failure envelopes are very accurate in the entire range of GSI value.

일반화된 Hoek-Brown (GHB) 파괴조건식은 최근 각종 암반공학적 계산에 활발히 이용되고 있지만 Mohr 파괴포락선이 해석적 수식으로 표시되지 않아 적용범위를 넓히는데 어려움이 있다. 이러한 단점을 극복하기 위해 이 연구에서는 GHB 파괴함수에 내포된 수직응력 - 접선마찰각 관계식을 다항식으로 최적 근사시켜 접선마찰각을 수직응력의 명시적 근사함수로 표시하는 새로운 방법을 제안하였다. 이 수직응력 - 접선마찰각 관계식을 직선 또는 2차 다항식으로 최적 근사시킬 경우 접선마찰각에 대한 해석적 해가 존재한다. 이 해를 전단응력 - 접선마찰각 관계식에 대입하면 GHB 파괴함수의 근사적 Mohr 파괴 포락선을 유도하는 것이 가능하다. 유도한 근사 Mohr 파괴포락선은 GSI 값 전체 범위에서 정해와 매우 근사함이 입증되었다.

Keywords

References

  1. Al-Ajmi, A.M. and Zimmerman, R.W., 2005, Relation between the Mogi and the Coulomb failure criteria, Int. J. Rock Mech. Min. Sci., 42, 431-439. https://doi.org/10.1016/j.ijrmms.2004.11.004
  2. Alejano, L.R. and Bobet, A., 2012, Drucker-Prager criterion, Rock Mech. Rock Eng., 45, 995-999. https://doi.org/10.1007/s00603-012-0278-2
  3. Balmer, G., 1952, A general analytical solution for Mohr's envelope, Proc. ASTM, Vol. 52, 1260-1271.
  4. Benz, T, Schwab, R, Kauther, R.A., Vermeer, P.A., 2008, A Hoek-Brown criterion with intrinsic material strength factorization, Int. J. Rock Mech. Min. Sci., 45(2), 210-222. https://doi.org/10.1016/j.ijrmms.2007.05.003
  5. Bretscher, O., 2005, Linear algebra with applications (3rd Ed), Pearson Prentice Hall, Upper Saddle River, New Jersey.
  6. Chen, W.-F., 2008, Limit analysis and soil plasticity, J.Ross Publishing Inc., Fort Lauderdale, USA.
  7. Clausen, J. and Damkilde, L., 2008, An exact implementation of the Hoek-Brown criterion for elasto-plastic finite element calculations, Int. J. Rock Mech. Min. Sci., 45, 831-847. https://doi.org/10.1016/j.ijrmms.2007.10.004
  8. Ewy, R., 1999, Wellbore-stability predictions by use of a modified Lade criterion. SPE Drill Completion, 14(2), 85-91. https://doi.org/10.2118/56862-PA
  9. Hoek, E., 1983, Strength of jointed rock masses, Geotechnique, 33(3), 187-223. https://doi.org/10.1680/geot.1983.33.3.187
  10. Hoek, E., Carranza-Torres, C. and Corkum, B., 2002, Hoek-Brown failure criterion - 2002 Edition, Proc. NARM-TAC Conf., Toronto, 1, 267-273.
  11. Hoek, E., 1999, Putting numbers to geology-an engineer's viewpoint, Quat. J. Eng. Geol., 32, 1-19. https://doi.org/10.1144/GSL.QJEG.1999.032.P1.01
  12. Lee, Y.-K., 2012, Comparative study on the rock failure criteria taking account of the intermediate principal stress, Tunnel & Underground Space, 22(1), 12-21. https://doi.org/10.7474/TUS.2012.22.1.012
  13. Lee, Y.-K., 2014, Derivation of Mohr envelope of Hoek-Brown failure criterion using non-dimensional stress transformation, Tunnel & Underground Space, 24(1), 81-88. https://doi.org/10.7474/TUS.2014.24.1.081
  14. Lee, Y.-K., Pietruszczak, S., 2017, Analytical representation of Mohr envelope approximating the generalized Hoek-Brown failure criterion, Int. J. Rock Mech. Min. Sci., 100, 90-99. https://doi.org/10.1016/j.ijrmms.2017.10.021
  15. Lee, Y.-K., Pietruszczak, S., 2018a, Approximation of Mohr envelope for the generalized Hoek-Brown criterion, Book of Extended Abstract for 4th Int. Sympo. on Comput. Geomech., Assisi, Italy.
  16. Lee, Y.-K., Pietruszczak, S., 2018b, Limit equilibrium analysis incorporating the generalized Hoek-Brown criterion, Rock Mech. Rock Eng. (submitted).
  17. Lee, Y.-K., Pietruszczak, S. and Choi, B.-H., 2012, Failure criteria for rocks based on smooth approximations to Mohr-Coulomb and Heok-Brown failure functions, Int. J. Rock Mech. Min. Sci., 56, 146-160. https://doi.org/10.1016/j.ijrmms.2012.07.032
  18. Londe, P., 1988, Discussion on the determination of the shear stress failure in rock masses, ASCE J. Geotech. Eng. Div., Vol. 14(3), 374-376.
  19. Mao, N., Al-Bittar, T. and Soubra, A.-H., 2012, Probabilistic analysis and design of strip foundation resting on rocks obeying Hoek-Brown failure criterion, Int. J. Rock Mech. Min. Sci., 49, 45-58. https://doi.org/10.1016/j.ijrmms.2011.11.005
  20. Merifield, R.S., Lyamin, A.V. and Sloan, S.W., 2006, Limit analysis solutions for the bearing capacity of rock masses using the generalized Hoek-Brown criterion, Int. J. Rock Mech. Min. Sci., 43, 920-937. https://doi.org/10.1016/j.ijrmms.2006.02.001
  21. Obert, L. and Duvall, W.I., 1967, Rock mechanics and the design of structures in rock, John Wiley & Sons, Inc., New York.
  22. Rojat, F., Labiouse, V. and Mestat, P., 2015, Improved analytical solutions for the response of underground excavations in rock mass satisfying the generalized Hoek-Brown failure criterion, Int. J. Rock Mech. Min. Sci., 79, 193-204. https://doi.org/10.1016/j.ijrmms.2015.08.002
  23. Ucar, R., 1986, Determination of shear failure envelope in rock masses, J. Geotech. Eng. Div. ASCE, Vol. 112(3), 303-315. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:3(303)
  24. Ulusay, R.(eds), 2014, The ISRM suggested methods for rock characterization, testing and monitoring: 2007-2014, Springer.
  25. Wyllie, D.C. and Mah, C.W., 2004, Rock Slope Engineering (4th Ed.), Spon Press, New York.
  26. Yang, X.L. and Huang, F., 2011, Collapse mechanism of shallow tunnel based on Hoek-Brown failure criterion, Tunnel. Underg. Space Tech., 26, 686-691. https://doi.org/10.1016/j.tust.2011.05.008
  27. Zhou, S., 1994, A program to model the initial shape and extend of borehole breakout, Comput. Geosci., 20, 1143-60. https://doi.org/10.1016/0098-3004(94)90068-X