Abstract
This study aims to analyze the performance of solar thermal system with heat pump for domestic hot water and heat supply. There are four types of system. Systems are categorized based on the existence of a heat pump and the ways of controlling the working fluid circulating from the collector. Working fluid is controlled by either temperature level (categorized as system 1 and 2) or sequential flow (system 3 and 4). Heat balance of the system, the solar fraction, hot water and heating supply rates, and performance of heat pump are analyzed using TRNSYS and TESS component programs. Technical specifications of the main facilities are as follow; the area of the collector to $25m^2$, the volumes of the main tank and the buffer tank to $0.5m^3$ and $0.8m^3$, respectively. Heating capacity of the heat pump in the heating mode is set to 30,000 kJ / hr. Hot water supply set 65 liters per person each day, total heat transfer coefficient of the building to 1,500 kJ / kg.K. Indoor temperature is kept steadily around $22^{\circ}C$. The results are as follows; 6 months average solar fraction of system 1 turns out to be 39%, which is 6.7% higher than system 2 without the heat pump, indicating a 25% increase of solar fraction compared to that of system 2. In addition, the solar fraction of system 1 is 2% higher than that of system 3. Hot water and heating supply rate of system 1 are 93% and 35%, respectively. Considering the heat balance of the system, higher heat efficiency, and solar fraction, as whole, it can be concluded that system 1 is the most suitable system for hot water and heat supply.