DOI QR코드

DOI QR Code

Urban spatial structure change detection in land cover map using time-series patch mapping

시계열 패치 매핑을 이용한 토지피복도의 도시공간구조 변화 검출

  • Lee, Young-Chang (Institute of Environment and Ecology, OJeong Eco-Resilience Institute, Korea University) ;
  • Lee, Kyoung-Mi (Department of Computer Science, Duksung Women's University) ;
  • Chon, Jinhyung (Division of Environmental Science and Ecological Engineering, Korea University)
  • 이영창 (고려대학교 오정에코리질리언스연구원 환경생태연구소) ;
  • 이경미 (덕성여자대학교 컴퓨터학과) ;
  • 전진형 (고려대학교 환경생태공학부)
  • Received : 2018.09.06
  • Accepted : 2018.09.20
  • Published : 2018.09.30

Abstract

In this paper, we propose a system to detect spatial structures in land cover maps and to detect time-series spatial structure changes. At first, the proposed system detects patches in a certain area at different times and calculates their measures to analyse spatial structure patterns of the area. Then the system conducts patch mapping among the detected time-series patches and decides 6 types of patch changes such as keeping, creating, disappearing, splitting, merging, and changing in a mixed way. Also, the system stores the patch-based spatial structure patterns of time-series land cover maps in binary form to extract changes. This demonstrated that the proposed change detection system can be used as a basis for planning the reconstruction of the urban spatial structure by measuring the degree of urban sprawl.

본 논문에서는 토지피복도에서 공간구조를 검출하고 시계열 공간구조 변화를 검출하는 시스템을 제안한다. 서로 다른 시간의 토지피복도에서 패치를 검출하고 패치의 측정요소를 계산하여 공간구조 패턴을 분석한다. 검출된 시계열 패치에 대해 패치 매핑을 이용하여 유지, 생성, 소멸, 분할, 병합, 혼합적 변환 등의 변화 유형을 결정한다. 또한, 시계열 토지피복도의 패치 기반 공간구조 패턴을 이진으로 저장하여 변화를 추출하였다. 본 논문에서는 제안하는 토지피복도 공간구조 변화검출 시스템을 통해 해당 지역(도시)의 난개발 현상을 진단하고, 향후 도시공간구조의 재구축을 위한 계획수립에 근거 자료로 활용될 수 있음을 보여주고 있다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. H. W. Chung and J. I. Kim, “The spatial distribution of urban sprawl in metropolitan regions,” Journal of Korea Planning Association, Vol. 38, No. 5, pp. 7-20, 2003.
  2. S. H. Kim, "Sustainable urban(region) development and so on," Planning and Policy, Vol. 236, pp. 49-49, 2001.
  3. A. Singh, "Digital change detection techniques using remotely-sensed data," International Journal of Remote Sensing, Vol. 10, No. 6, pp. 989-1003, 1989. https://doi.org/10.1080/01431168908903939
  4. M. Hussain, D. Chen, A. Cheng, H. Wei, and D. Stanley, "Change detection from remotely sensed images: From pixel-based to object-based approaches," ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 80(June), pp. 91-106, 2013. https://doi.org/10.1016/j.isprsjprs.2013.03.006
  5. S. Ross and H. S. Bhadauria, "A review of change detection techniques of landcover using remote sensing data," IOSR Journal of Computer Engineering, Vol. 17, no. 3, pp. 17-21, 2015.
  6. Y. C. Lee, K. M. Lee and J. H. Chon, "Landscape mosaic pattern analysis system using land cover map for micro-spatial analysis of regional planning," Journal of Digital Contents Society, Vol. 18, No. 7, pp. 1367-1375, 2017. https://doi.org/10.9728/DCS.2017.18.7.1367
  7. G. Chen, G. J. Hay, L. M. T. Carvalho and M. A. Wulder, "Object-based change detection," International Journal of Remote Sensing, Vol. 33, No. 14, pp. 4434-4457, 2012. https://doi.org/10.1080/01431161.2011.648285
  8. J. S. Kim, K. J. Lee and T. K. Whangbo, “Illumination influence minimization method for efficient object,” Journal of Digital Contents Society, Vol. 14, No. 1, pp. 117-124, 2013. https://doi.org/10.9728/dcs.2013.14.1.117
  9. National Environment Information Network System (NEINS). Available: http://www.neins.go.kr.

Cited by

  1. A study on urban growth visual content model using prime numbers vol.21, pp.7, 2018, https://doi.org/10.9728/dcs.2020.21.7.1383