DOI QR코드

DOI QR Code

Synthesis of SnSb alloys using high energy ball-miiling and its lithium electrochemical behavior

고에너지 볼밀을 이용한 SnSb 합금 분말 제조와 리튬 전기화학적 특성

  • Kim, Dae Kyung (School of Materials Science and Engineering, Andong National University) ;
  • Lee, Hyukjae (School of Materials Science and Engineering, Andong National University)
  • 김대경 (안동대학교 신소재공학부) ;
  • 이혁재 (안동대학교 신소재공학부)
  • Received : 2018.08.18
  • Accepted : 2018.09.20
  • Published : 2018.10.31

Abstract

SnSb alloy powders with excess Sn or Sb are fabricated by the high energy ball-milling of pure Sn and Sb powders with different Sn/Sb molar ratios, and then their material properties and lithium electrochemical performances are investigated. It is revealed by X-ray diffraction that SnSb alloys are successfully synthesized, and the powder size is decreased via ball-milling. Charge-discharge test using a coin-cell shows that the best result, in terms of the cyclability and the capacity after 50 cycles, comes from the electrode composed of Sn : Sb = 4 : 6, i.e. the capacity of $580mAh\;g^{-1}$ after 50 cycles. When the electrode is composed of Sn : Sb = 3 : 7, however, the capacity is noticeably decreased by the restrained Sn reaction with Li-ion. The pure SnSb alloy powders (Sn : Sb = 5 : 5) results in the second best performance. In the case of Sn-rich SnSb alloys, the initial capacity is relatively high, but the capacity is quickly fading after 20 cycles.

알곤 분위기 하에서 다양한 몰 비의 Sn과 Sb 혼합분말에 대한 고에너지 볼밀을 시행하여 잔류 Sn, Sb 입자를 지닌 SnSb 합금결정상을 가지는 분말을 제조한 후, 그 소재적 특성과 리튬전기화학적 거동을 조사하였다. 시작 분말 내 Sn, Sb의 양 조절을 통해 잔류 Sn, Sb 상을 지닌 SnSb의 합금분말의 합성과 볼밀링에 의한 입자크기의 감소가 X-선 회절 분석과 입도 분석에 의해 확인되었다. Li 금속을 상대전극으로 하여 합성된 SnSb 합금분말에 대한 Li 이온의 충방전 실험 결과, 시작 분말에서 Sn과 Sb의 몰 비를 4:6으로 하여 소량의 잔류 Sb를 지닌 SnSb 합금분말에서 가장 좋은 사이클 특성을 보여, $40mA\;g^{-1}$의 정전류 하에서 50회 충방전 후 $580mAh\;g^{-1}$의 용량을 보였으며, SnSb 합금상만을 가진 분말이 다음으로 좋은 충방전 특성을 보였다. 그러나 Sn : Sb = 3 : 7 합금분말에서는 Sn과 Li-ion의 반응이 억제되어 낮은 용량을 보였다. 잔류 Sn 상이 포함된 SnSb 합금 분말은 초기의 높은 용량을 지속하지 못하고 20회 이상의 충방전 시 급격한 용량 감소를 보였다.

Keywords

References

  1. R. Van Noorden, "A better battery", Nature 507 (2014) 26. https://doi.org/10.1038/507026a
  2. D. Larcher and J.M. Tarascon, "Towards greener and more sustainable batteries for electrical energy storage", Nat. Chem. 7 (2015) 19. https://doi.org/10.1038/nchem.2085
  3. C.M. Park, J.H. Kim, H. Kim and H.J. Sohn, "Li-alloy based anode materials for Li secondary batteries", Chem. Soc. Rev. 39 (2010) 3115. https://doi.org/10.1039/b919877f
  4. X.L. Wang, M. Feygenson, H.Y. Chen, C.H. Lin, W. Ku, J.M. Bai, M.C. Aronson, T.A. Tyson and W.Q. Han, "Nanospheres of a new intermetallic FeSn5 phase: Synthesis, magnetic properties and anode performance in Li-ion batteries", J. Am. Chem. Soc. 133 (2011) 11213. https://doi.org/10.1021/ja202243j
  5. Y. Gu, F.D. Wu and Y. Wang, "Confined volume change in Sn-Co-C ternary Tube-in-Tube composites for high-capacity and long-life lithium storage", Adv. Funct. Mater. 23 (2013) 893. https://doi.org/10.1002/adfm.201202136
  6. I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov and G. Yushin, "A major constituent of brown algae for use in high-capacity Li-ion batteries", Science 334 (2011) 75. https://doi.org/10.1126/science.1209150
  7. A.M. Chockla, K.C. Klavetter, C.B. Mullins and B.A. Korgel, "Tin-seeded silicon nanowires for high capacity Li-Ion batteries", Chem. Mater. 24 (2012) 3738. https://doi.org/10.1021/cm301968b
  8. S.C. Chao, Y.F. Song, C.C. Wang, H.S. Sheu, H.C. Wu and N.L. Wu, "Study on microstructural deformation of working Sn and SnSb anode particles for Li-ion batteries by in situ transmission X-ray microscopy", J. Phys. Chem. C 115 (2011) 22040. https://doi.org/10.1021/jp206829q
  9. H.L. Zhao, C.L. Yin, H. Guo, J.C. He, W.H. Qiu and Y. Li, "Studies of the electrochemical performance of SnSb alloy prepared by solid-state reduction", J. Power Sources 174 (2007) 916. https://doi.org/10.1016/j.jpowsour.2007.06.143
  10. S.F. Fan, T. Sun, X.H. Rui, Q.Y. Yan and H.H. Hng, "Cooperative enhancement of capacities in nanostructured SnSb/carbon nanotube network nanocomposite as anode for lithium ion batteries", J. Power Sources 201 (2012) 288. https://doi.org/10.1016/j.jpowsour.2011.10.137
  11. H. Li, G.Y. Zhu, X.J. Huang and L.Q. Chen, "Synthesis and electrochemical performance of dendrite-like nanosized SnSb alloy prepared by co-precipitation in alcohol solution at low temperature", J. Mater. Chem. 10 (2000) 693. https://doi.org/10.1039/a906491e
  12. J.U. Seo and C.M. Park, "Nanostructured SnSb/MOx (M = Al or Mg)/C composites: hybrid mechanochemical synthesis and excellent Li storage performances", J. Mater. Chem. A 48 (2013) 15316.
  13. S. Das, T.N. Guru Row and A.J. Bhattacharyya, "Probing the critical role of Sn content in SnSb@C nanofiber anode on Li storage mechanism and battery performance", ACS Omega 2 (2017) 9250. https://doi.org/10.1021/acsomega.7b01479
  14. Y. Wang and J.Y. Lee, "One-step, confined growth of bimetallic Tin-antimony nanorods in carbon nanotubes grown in situ for reversible Li+ ion storage", Angew. Chem., Int. Ed. 45 (2006) 7039. https://doi.org/10.1002/anie.200602071
  15. M. He, M. Walter, K.V. Kravchyk, R. Erni, R. Widmer and M.V. Kovalenko, "Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb", Nanoscale 7 (2015) 455. https://doi.org/10.1039/C4NR05604C
  16. M. Walter, S. Doswald and M.V. Kovalenko, "Inexpensive colloidal SnSb nanoalloys as efficient anode materials for lithium- and sodium-ion batteries", J. Mater. Chem. 4 (2016) 7053. https://doi.org/10.1039/C5TA10568D
  17. Y.F. Zhukovskii, P. Balaya, E.A. Kotomin and J. Maier, "Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations", Phys. Rev. Lett. 96 (2006) 058302. https://doi.org/10.1103/PhysRevLett.96.058302
  18. Y.-Y. Hu, Z. Liu, K.-W. Nam, O.J. Borkiewicz, J. Cheng, X. Hua, M.T. Dunstan, X. Yu, K.M. Wiaderek, L.-S. Du, K.W. Chapman, P.J. Chupas, X.-Q. Yang and C.P. Grey, "Origin of additional capacities in metal oxide lithium-ion battery electrodes", Nat. Mater. 12 (2013) 1130. https://doi.org/10.1038/nmat3784
  19. F.J. Fernandez-Madrigal, P. Lavela, C.P. Vicente, J.L. Tirado, J.C. Jumas and J. Olivier-Fourcade, "X-ray diffraction, $^7Li$ MAS NMR spectroscopy, and $^{119}Sn$ Mossbauer spectroscopy study of SnSb-based electrode materials", Chem. Mater. 14 (2002) 2962. https://doi.org/10.1021/cm0112800
  20. L. Aldon, A. Garcia, J. Olivier-Fourcade, J.-C. Jumas, F.J. Fernandez-Madrigal, P. Lavela, C.P. Vicente and J.L. Tirado, "Lithium insertion mechanism in Sb-based electrode materials from $^{121}Sb$ Mossbauer spectrometry", J. Power Sources 119-121 (2003) 585. https://doi.org/10.1016/S0378-7753(03)00299-4