DOI QR코드

DOI QR Code

적응적 분할격자 기반 2차원 침수해석모형 K-Flood의 개발

Development of 2D inundation model based on adaptive cut cell mesh (K-Flood)

  • 안현욱 (충남대학교 지역환경토목학과) ;
  • 정안철 (충남대학교 국제수자원연구소) ;
  • 김연수 (K-water 융합연구원 물순환연구소) ;
  • 노준우 (K-water 융합연구원 물순환연구소)
  • An, Hyunuk (Local Environmental Engineering Department, Chungnam National University) ;
  • Jeong, Anchul (International Water Resources Research Institute, Chungnam National University) ;
  • Kim, Yeonsu (Water Resources Research Center, K-water Convergence Institute) ;
  • Noh, Joonwoo (Water Resources Research Center, K-water Convergence Institute)
  • 투고 : 2018.07.20
  • 심사 : 2018.08.13
  • 발행 : 2018.10.31

초록

본 연구에서는 적응적 분할격자기반 2차원 침수해석모형 K-Flood를 개발하였다. 분할격자기법은 흐름 특성을 기반으로 격자를 분할하여 흐름영역과 비흐름영역으로 구분하는 격자생성기법이며, 분할격자기법과 격자세분화기법을 동시에 활용하면 매우 적은 수의 격자로 복잡한 형상의 흐름영역을 표현할 수 있어 효율적인 모의가 가능하다. 특히 최근 도시홍수에 대해 매우 정밀한 해상도의 자료와 격자를 이용하여 보다 정확한 침수해석 또는 예보를 하고자 하는 시도가 늘어나고 있으며, K-Flood는 이러한 복잡한 흐름영역의 계산 시 적응적 분할격자를 활용하여 효율적인 격자생성이 가능하다. 공간 및 시간에 대해 2차 정확도의 유한체적 수치해법이 적용되었다. K-Flood의 검증을 위해 2차원 침수해석모형의 검증에 널리 사용되고 있는 1) 원형 실린더에 의한 충격파 반사 모의, 2) 도시홍수실험 모의, 3) Malpasset 댐붕괴 모의를 수행하였다. 모든 모의에서 관측자료 및 과거의 모의결과와 비교하여 성공적으로 K-Flood의 성능을 검증하였다.

An adaptive cut-cell grid based 2D inundation analysis model, K-Flood, is developed in this study. Cut cell grid method divides a grid into a flow area and a non-flow area depending the characteristics of the flows. With adaptive mesh refinement technique cut cell method can represent complex flow area using relatively small number of cells. In recent years, the urban inundation modeling using high resolution and fine quality data is increasing to achieve more accurate flood analysis or flood forecasting. K-Flood has potential to simulate such complex urban inundation using efficient grid generation technique. A finite volume numerical scheme of second order accuracy for space and time was applied. For verification of K-Flood, 1) shockwave reflex simulation by circular cylinder, 2) urban flood experiment simulation, 3) Malpasset dam collapse simulation are performed and the results are compared with observed data and previous simulation results.

키워드

참고문헌

  1. An, H., and Yu, S. (2011). "Numerical simulation of urban flash flood experiments using adaptive mesh refinement and cut cell method." Journal of Korea Water Resources Association, Vol. 44, No. 7, pp. 511-522 (in Korean). https://doi.org/10.3741/JKWRA.2011.44.7.511
  2. An, H., and Yu, S. (2012). "Well-balanced shallow water flow simulation on quadtree cut cell grids." Advances in Water Resources, Vol. 39, pp. 60-70. https://doi.org/10.1016/j.advwatres.2012.01.003
  3. An, H., Yu, S., Lee, G., and Kim, Y. (2015). "Analysis of an open source quadtree grid shallow water flow solver for flood simulation." Quaternary International, Vol. 384, pp. 118-128. https://doi.org/10.1016/j.quaint.2015.01.032
  4. Audusse, E., Bouchut, F., Bristeau, M. O., Klein, R., and Perthame, B. (2004). "A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows." SIAM Journal on Scientific Computing, Vol. 25, No. 6, pp. 2050-2065. https://doi.org/10.1137/S1064827503431090
  5. Begnudelli, L., and Sanders, F. (2006). "Unstructured grid finitevolume algorithm for shallow water flow and scalar transport with wetting and drying." Journal of Hydraulic Engineering, Vol. 132, No. 4, pp. 371-384. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:4(371)
  6. Benkhaldoun, F., Elmahi, I., and Seaid, M. (2007). "Well-balanced finite volume schemes for pollutant transport by shallow water equations on unstructured meshes." Journal of Computational Physics, Vol. 226, No. 1, pp. 180-203. https://doi.org/10.1016/j.jcp.2007.04.005
  7. Brufau, P., Garcia-Navarro, P., and Vazquez-Cendon, M. E. (2004). "Zero mass error using unsteady wetting-drying conditions in shallow flows over dry irregular topography." International Journal for Numerical Methods in Fluids, Vol. 45, No. 10, pp. 1047-1082. https://doi.org/10.1002/fld.729
  8. Caleffi, V., Valiani, A., and Bernini, A. (2007). "High-order balanced CWENO scheme for movable bed shallow water equations." Advances in Water Resources, Vol. 30, No. 4, pp. 730-741. https://doi.org/10.1016/j.advwatres.2006.06.003
  9. Causon, D. M., Ingram, D. M., and Mingham, C. (2001). "A cartesian cut cell method for shallow water flows with moving boundaries." Advances in Water Resources, Vol. 24, No. 8, pp. 899-911. https://doi.org/10.1016/S0309-1708(01)00010-0
  10. Causon, D. M., Ingram, D. M., Mingham, C. G., Yang, G., and Pearson, R. V. (2000). "Calculation of shallow water flows using a Cartesian cut cell approach." Advances in Water Resources, Vol. 23, No. 5, pp. 545-562. https://doi.org/10.1016/S0309-1708(99)00036-6
  11. Gallardo, J. M., Pares, C., and Castro, M. (2007). "On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas." Journal of Computational Physics, Vol. 227, No. 1, pp. 574-601. https://doi.org/10.1016/j.jcp.2007.08.007
  12. Garcia-Navarro, P., and Vazquez-Cendon, E. (2000). "On numerical treatment of the source terms in shallow water equations." Computers & Fluids, Vol. 25, No. 8, pp. 951-979.
  13. Harten, A., Lan, P. D., and Van Leer, B. (1983). "On upstream differencing and Godunov-type schemes for hyperbolic conservation laws." SIAM Review, Vol. 25, No. 1, pp. 35-61. https://doi.org/10.1137/1025002
  14. Hervouet, J. M. (2000). "A high-resolution 2-D Dam-break model using parallelization." Hydrological Processes, Vol. 14, No. 13, pp. 2211-2230. https://doi.org/10.1002/1099-1085(200009)14:13<2211::AID-HYP24>3.0.CO;2-8
  15. Huang, W., Cao, Z., Pender, G., Liu, Q., and Carling, P. (2015). "Coupled flood and sediment transport modelling with adaptive mesh refinement." Science China Technological Sciences, Vol. 58, No. 8, pp. 1425-1438. https://doi.org/10.1007/s11431-015-5880-6
  16. Jablonowski, C., and Williamson, D. L. (2006). "A baroclinic instability test case for atmospheric model dynamical cores." Quarterly Journal of the Royal Meteorological Society, Vol. 132, No. 621C, pp. 2943-2975. https://doi.org/10.1256/qj.06.12
  17. Kesserwani, G., and Liang, Q. (2012). "Dynamically adaptive grid based discontinuous Galerkin shallow water model." Advances in Water Resources, Vol. 37, pp. 23-39. https://doi.org/10.1016/j.advwatres.2011.11.006
  18. Kim, H., and Cho, Y. (2011). "Numerical model for flood routing with a Cartesian cut-cell domain." Journal of Hydraulic Research, Vol. 49, No. 2, 205-212. https://doi.org/10.1080/00221686.2010.547037
  19. Kim, H., Kim, J., and Cho, Y. (2009). "Numerical analysis of dambreak flow in an experimental channel using cut-cell method." KSCE Journal of Civil Engineering, Vol. 29, pp. 121-129.
  20. Lee, S., Noh, S., Jang, C., and Rhee, D. (2017). "Simulation and analysis of urban inundation using the integrated 1D-2D urban flood model." Journal of Korea Water Resources Association, Vol. 50, No. 4, pp. 263-275. (in Korean) https://doi.org/10.3741/JKWRA.2017.50.4.263
  21. Liang, Q., and Borthwick, A. G. L. (2009). "Adapive quadtree simulation of shallow flows with wet-dry fronts over complex topography." Computers & Fluids, Vol. 38, No. 2, pp. 221-234. https://doi.org/10.1016/j.compfluid.2008.02.008
  22. Liang, Q., and Marche, F. (2009). "Numerical resolution of wellbalanced shallow water equations with complex source terms." Advances in Water Resources, Vol. 32, No. 6, pp. 873-884. https://doi.org/10.1016/j.advwatres.2009.02.010
  23. Liang, Q., Zang, J., Borthwick, A. G. L., and Taylor, P. H. (2007). "Shallow flow simulation on dynamically adaptive cut cell quadtree grids." International Journal for Numerical Methods in Fluids, Vol. 53, No. 12, pp. 1777-1799. https://doi.org/10.1002/fld.1363
  24. Noh, S., Lee, J., Lee, S., Kawaike, K., and Seo, D. (2018). "Hyperresolution 1D-2D urban flood modelling using LiDAR data and hybrid parallelization." Environmental Modelling & Software, Vol. 103, pp. 131-145. https://doi.org/10.1016/j.envsoft.2018.02.008
  25. Popinet, S. (2011). "Quadtree-adaptive tsunami modelling." Ocean Dynamics, Vol. 61, No. 9, pp. 1261-1285. https://doi.org/10.1007/s10236-011-0438-z
  26. Quirk, J. J. (1994). "An alternative to unstructed grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies." Journal of Computers and Fluids, Vol. 23, No. 1, pp. 125-142. https://doi.org/10.1016/0045-7930(94)90031-0
  27. Rogers, B. D., Borthwick, A. G. L., and Taylor, P. H. (2003). "Mathematical balancing of flux gradient and source terms prior to using Roe's approximate Riemann solver." Journal of Computational Physics, Vol. 192, No. 2, pp. 422-451. https://doi.org/10.1016/j.jcp.2003.07.020
  28. Seo, I. W., Kim, J. S., and Jung, S. H. (2016). "Numerical simulation of two-dimensional pollutant mixing in rivers using RAMS." Procedia Engineering, Vol. 154, pp. 544-549. https://doi.org/10.1016/j.proeng.2016.07.550
  29. Sussman, M. (2005). "A parallelized, adaptive algorithm for multiphase flows in general geometries." Computers and Structures, Vol. 83, No. 6-7, pp. 435-444. https://doi.org/10.1016/j.compstruc.2004.06.006
  30. Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F. W., Dutta, D., and Kim, S. (2017). "Flood inundation modelling: A review of methods, recent advances and uncertainty analysis." Environmental Modelling & Software, Vol. 90, pp. 201-216. https://doi.org/10.1016/j.envsoft.2017.01.006
  31. Testa, G., Zuccala, D., Alcrudo, F., Mulet, J., and Soares Frazao, S. (2007). "Flash flood flow experiment in a simplified urban district." Journal of Hydraulic Research, Vol. 45, pp. 37-44. https://doi.org/10.1080/00221686.2007.9521831
  32. Toro, E. F. (2001). "Shock-capturing methods for free-surface shallow flow." John Wiley & Sons, New York.
  33. Valiani, A., Caleffi, V., and Zanni, A. (2002). "Case study: Malpasset dam-break simulation using a two-dimensional finite volume method." Journal of Hydraulic Engineering, Vol. 128, No. 5, pp. 460-472. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(460)
  34. Yang, J. Y., Liu, Y., and Lomax, H. (1987). "Computation of shock wave reflection by circular cylinders." AIAA Journal, Vol. 25, No. 5, pp. 683-689. https://doi.org/10.2514/3.9683
  35. Zhou, J. G., Causon, D. M., Mingham, C. G., and Ingram, D. M. (2001). "The surface gradient method for the treatment of source terms in the shallow water equations." Journal of Computational Physics, Vol. 168, No. 1, pp. 1-25. https://doi.org/10.1006/jcph.2000.6670