References
- An, H., and Yu, S. (2011). "Numerical simulation of urban flash flood experiments using adaptive mesh refinement and cut cell method." Journal of Korea Water Resources Association, Vol. 44, No. 7, pp. 511-522 (in Korean). https://doi.org/10.3741/JKWRA.2011.44.7.511
- An, H., and Yu, S. (2012). "Well-balanced shallow water flow simulation on quadtree cut cell grids." Advances in Water Resources, Vol. 39, pp. 60-70. https://doi.org/10.1016/j.advwatres.2012.01.003
- An, H., Yu, S., Lee, G., and Kim, Y. (2015). "Analysis of an open source quadtree grid shallow water flow solver for flood simulation." Quaternary International, Vol. 384, pp. 118-128. https://doi.org/10.1016/j.quaint.2015.01.032
- Audusse, E., Bouchut, F., Bristeau, M. O., Klein, R., and Perthame, B. (2004). "A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows." SIAM Journal on Scientific Computing, Vol. 25, No. 6, pp. 2050-2065. https://doi.org/10.1137/S1064827503431090
- Begnudelli, L., and Sanders, F. (2006). "Unstructured grid finitevolume algorithm for shallow water flow and scalar transport with wetting and drying." Journal of Hydraulic Engineering, Vol. 132, No. 4, pp. 371-384. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:4(371)
- Benkhaldoun, F., Elmahi, I., and Seaid, M. (2007). "Well-balanced finite volume schemes for pollutant transport by shallow water equations on unstructured meshes." Journal of Computational Physics, Vol. 226, No. 1, pp. 180-203. https://doi.org/10.1016/j.jcp.2007.04.005
- Brufau, P., Garcia-Navarro, P., and Vazquez-Cendon, M. E. (2004). "Zero mass error using unsteady wetting-drying conditions in shallow flows over dry irregular topography." International Journal for Numerical Methods in Fluids, Vol. 45, No. 10, pp. 1047-1082. https://doi.org/10.1002/fld.729
- Caleffi, V., Valiani, A., and Bernini, A. (2007). "High-order balanced CWENO scheme for movable bed shallow water equations." Advances in Water Resources, Vol. 30, No. 4, pp. 730-741. https://doi.org/10.1016/j.advwatres.2006.06.003
- Causon, D. M., Ingram, D. M., and Mingham, C. (2001). "A cartesian cut cell method for shallow water flows with moving boundaries." Advances in Water Resources, Vol. 24, No. 8, pp. 899-911. https://doi.org/10.1016/S0309-1708(01)00010-0
- Causon, D. M., Ingram, D. M., Mingham, C. G., Yang, G., and Pearson, R. V. (2000). "Calculation of shallow water flows using a Cartesian cut cell approach." Advances in Water Resources, Vol. 23, No. 5, pp. 545-562. https://doi.org/10.1016/S0309-1708(99)00036-6
- Gallardo, J. M., Pares, C., and Castro, M. (2007). "On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas." Journal of Computational Physics, Vol. 227, No. 1, pp. 574-601. https://doi.org/10.1016/j.jcp.2007.08.007
- Garcia-Navarro, P., and Vazquez-Cendon, E. (2000). "On numerical treatment of the source terms in shallow water equations." Computers & Fluids, Vol. 25, No. 8, pp. 951-979.
- Harten, A., Lan, P. D., and Van Leer, B. (1983). "On upstream differencing and Godunov-type schemes for hyperbolic conservation laws." SIAM Review, Vol. 25, No. 1, pp. 35-61. https://doi.org/10.1137/1025002
- Hervouet, J. M. (2000). "A high-resolution 2-D Dam-break model using parallelization." Hydrological Processes, Vol. 14, No. 13, pp. 2211-2230. https://doi.org/10.1002/1099-1085(200009)14:13<2211::AID-HYP24>3.0.CO;2-8
- Huang, W., Cao, Z., Pender, G., Liu, Q., and Carling, P. (2015). "Coupled flood and sediment transport modelling with adaptive mesh refinement." Science China Technological Sciences, Vol. 58, No. 8, pp. 1425-1438. https://doi.org/10.1007/s11431-015-5880-6
- Jablonowski, C., and Williamson, D. L. (2006). "A baroclinic instability test case for atmospheric model dynamical cores." Quarterly Journal of the Royal Meteorological Society, Vol. 132, No. 621C, pp. 2943-2975. https://doi.org/10.1256/qj.06.12
- Kesserwani, G., and Liang, Q. (2012). "Dynamically adaptive grid based discontinuous Galerkin shallow water model." Advances in Water Resources, Vol. 37, pp. 23-39. https://doi.org/10.1016/j.advwatres.2011.11.006
- Kim, H., and Cho, Y. (2011). "Numerical model for flood routing with a Cartesian cut-cell domain." Journal of Hydraulic Research, Vol. 49, No. 2, 205-212. https://doi.org/10.1080/00221686.2010.547037
- Kim, H., Kim, J., and Cho, Y. (2009). "Numerical analysis of dambreak flow in an experimental channel using cut-cell method." KSCE Journal of Civil Engineering, Vol. 29, pp. 121-129.
- Lee, S., Noh, S., Jang, C., and Rhee, D. (2017). "Simulation and analysis of urban inundation using the integrated 1D-2D urban flood model." Journal of Korea Water Resources Association, Vol. 50, No. 4, pp. 263-275. (in Korean) https://doi.org/10.3741/JKWRA.2017.50.4.263
- Liang, Q., and Borthwick, A. G. L. (2009). "Adapive quadtree simulation of shallow flows with wet-dry fronts over complex topography." Computers & Fluids, Vol. 38, No. 2, pp. 221-234. https://doi.org/10.1016/j.compfluid.2008.02.008
- Liang, Q., and Marche, F. (2009). "Numerical resolution of wellbalanced shallow water equations with complex source terms." Advances in Water Resources, Vol. 32, No. 6, pp. 873-884. https://doi.org/10.1016/j.advwatres.2009.02.010
- Liang, Q., Zang, J., Borthwick, A. G. L., and Taylor, P. H. (2007). "Shallow flow simulation on dynamically adaptive cut cell quadtree grids." International Journal for Numerical Methods in Fluids, Vol. 53, No. 12, pp. 1777-1799. https://doi.org/10.1002/fld.1363
- Noh, S., Lee, J., Lee, S., Kawaike, K., and Seo, D. (2018). "Hyperresolution 1D-2D urban flood modelling using LiDAR data and hybrid parallelization." Environmental Modelling & Software, Vol. 103, pp. 131-145. https://doi.org/10.1016/j.envsoft.2018.02.008
- Popinet, S. (2011). "Quadtree-adaptive tsunami modelling." Ocean Dynamics, Vol. 61, No. 9, pp. 1261-1285. https://doi.org/10.1007/s10236-011-0438-z
- Quirk, J. J. (1994). "An alternative to unstructed grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies." Journal of Computers and Fluids, Vol. 23, No. 1, pp. 125-142. https://doi.org/10.1016/0045-7930(94)90031-0
- Rogers, B. D., Borthwick, A. G. L., and Taylor, P. H. (2003). "Mathematical balancing of flux gradient and source terms prior to using Roe's approximate Riemann solver." Journal of Computational Physics, Vol. 192, No. 2, pp. 422-451. https://doi.org/10.1016/j.jcp.2003.07.020
- Seo, I. W., Kim, J. S., and Jung, S. H. (2016). "Numerical simulation of two-dimensional pollutant mixing in rivers using RAMS." Procedia Engineering, Vol. 154, pp. 544-549. https://doi.org/10.1016/j.proeng.2016.07.550
- Sussman, M. (2005). "A parallelized, adaptive algorithm for multiphase flows in general geometries." Computers and Structures, Vol. 83, No. 6-7, pp. 435-444. https://doi.org/10.1016/j.compstruc.2004.06.006
- Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F. W., Dutta, D., and Kim, S. (2017). "Flood inundation modelling: A review of methods, recent advances and uncertainty analysis." Environmental Modelling & Software, Vol. 90, pp. 201-216. https://doi.org/10.1016/j.envsoft.2017.01.006
- Testa, G., Zuccala, D., Alcrudo, F., Mulet, J., and Soares Frazao, S. (2007). "Flash flood flow experiment in a simplified urban district." Journal of Hydraulic Research, Vol. 45, pp. 37-44. https://doi.org/10.1080/00221686.2007.9521831
- Toro, E. F. (2001). "Shock-capturing methods for free-surface shallow flow." John Wiley & Sons, New York.
- Valiani, A., Caleffi, V., and Zanni, A. (2002). "Case study: Malpasset dam-break simulation using a two-dimensional finite volume method." Journal of Hydraulic Engineering, Vol. 128, No. 5, pp. 460-472. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(460)
- Yang, J. Y., Liu, Y., and Lomax, H. (1987). "Computation of shock wave reflection by circular cylinders." AIAA Journal, Vol. 25, No. 5, pp. 683-689. https://doi.org/10.2514/3.9683
- Zhou, J. G., Causon, D. M., Mingham, C. G., and Ingram, D. M. (2001). "The surface gradient method for the treatment of source terms in the shallow water equations." Journal of Computational Physics, Vol. 168, No. 1, pp. 1-25. https://doi.org/10.1006/jcph.2000.6670