DOI QR코드

DOI QR Code

Effect of Tempering Condition on Hydrogen Diffusion Behavior of Martensitic High-Strength Steel

템퍼링 조건이 마르텐사이트계 고강도강의 수소확산거동에 미치는 영향

  • Park, Jin-seong (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Hwang, Eun Hye (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Lee, Man Jae (Analysis and Assessment Group, Research Institute of Industrial Science and Technology (RIST)) ;
  • Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
  • 박진성 (순천대학교 신소재공학과) ;
  • 황은혜 (순천대학교 신소재공학과) ;
  • 이만재 (포항산업과학연구원 분석평가그룹) ;
  • 김성진 (순천대학교 신소재공학과)
  • Received : 2018.08.25
  • Accepted : 2018.10.03
  • Published : 2018.10.31

Abstract

Martensitic high-strength steels revealed superior mechanical properties of high tensile strength exceeding 1000 Mpa, and have been applied in a variety of industries. When the steels are exposed to corrosive environments, however, they are susceptible to hydrogen embrittlement (HE), resulting in catastrophic cracking failure. To improve resistance to HE, it is crucial to obtain significant insight into the exact physical nature associated with hydrogen diffusion behavior in the steel. For martensitic steels, tempering condition should be adjusted carefully to improve toughness. The tempering process involves microstructural modifications, that provide changes in hydrogen diffusion/trapping behavior in the steels. From this perspective, this study examined the relationship between tempering condition and hydrogen diffusion behavior in the steels. Results based on glycerin measurements and hydrogen permeation evaluations indicated that hydrogen diffusion/trapping behavior was strongly affected by the characteristics of precipitates, as well as by metallurgical defects such as dislocation. Tempering condition should be adjusted properly by considering required mechanical properties and resistance to HE.

Keywords

References

  1. H. Karbasian and A. E. Tekkaya, J. Mater. Process. Tech., 210, 2103 (2010). https://doi.org/10.1016/j.jmatprotec.2010.07.019
  2. S. L. Gibbons, R. A. Abrahams, M. W. Vaughan, R. E. Barber, R. C. Harris, and R. Arroyave, Mater. Sci. Eng. A, 725, 57 (2018). https://doi.org/10.1016/j.msea.2018.04.005
  3. Z. J. Xie, C. J. Shang, X. L. Wang, X. P. Ma, S. V. Subramanian, and R. D. K. Misra, Mater. Sci. Eng. A, 727, 200 (2018). https://doi.org/10.1016/j.msea.2018.04.086
  4. T. Schaffner, A. Hartmaier, V. Kokotin, and M. Pohl, J. Alloy. Comp., 746, 557 (2018). https://doi.org/10.1016/j.jallcom.2018.02.264
  5. S. Takagi, Y. Toji, M. Yoshino, and K. Hasegawa, ISIJ. Inter., 52, 316 (2012). https://doi.org/10.2355/isijinternational.52.316
  6. H. J. Kang, J. S. Yoo, J. T. Park, S. T. Ahn, N. Kang, and K. M. Cho, Mater. Sci. Eng. A, 543, 6 (2016).
  7. M. B. Djukic, V. S. Zeravcic, G. M. Bakic, A. Sedmak, and B. Rajicic, Eng. Fail. Anal., 58, 485 (2015). https://doi.org/10.1016/j.engfailanal.2015.05.017
  8. J. L. Gu, K. D. Chang, H. S. Fang, and B. Z. Bal, ISIJ. Int., 42, 1560 (2002). https://doi.org/10.2355/isijinternational.42.1560
  9. U. R. Evans and C. V. King, J. Electrochem. Soc., 108, 94 (1961). https://doi.org/10.1149/1.2428098
  10. A. V. Syugaev, N. V. Lyalina, S. F. Lomaeva, and S. M. Reshetnikov, Prot. Met. Phys. Chem. Surf., 48, 429 (2012).
  11. J. H. Jang, I. G. Kim, and H. K. D. H. Bhadeshia, Scripta Mater., 63, 121 (2010). https://doi.org/10.1016/j.scriptamat.2010.03.026
  12. C. Zapffe and C. Sims, Trans. AIME, 145, 225 (1941).
  13. A. R. Troiano, Trans. ASM., 52, 54 (1960).
  14. A. Nagao, K. Hayashi, K. Oi, and S. Mitao, ISIJ. Int., 52, 213 (2012). https://doi.org/10.2355/isijinternational.52.213
  15. JIS Z 3113, Method of Measurement for Hydorgen evolved from Steel Welds, Japan Standards Association (1983).
  16. ISO 17081:2004 (E), Method of Measurement of Hydrogen Permeation and Determination of Hydrogen Uptake and Transport in Metals by an Electrochemical Technique, ISO, Switzerland (2004).
  17. J. S. Park, H. J. Lee, and S. J. Kim, Korean J. Mater. Res., 28, 286 (2018). https://doi.org/10.3740/MRSK.2018.28.5.286
  18. G. Malakondaiah, M. Srinivas, and P. R. Rao., Progr. Mater. Sci., 42, 209 (1997). https://doi.org/10.1016/S0079-6425(97)00016-9
  19. E. H. Hwang, H. G. Seong, and S. J. Kim, Korean J. Met. Mater., 56, 570 (2018). https://doi.org/10.3365/KJMM.2018.56.8.570
  20. G. R. Speich, Trans. Metall. Soc. AIME 245, 2553 (1969).
  21. S. J. Kim, J. S. Park, E. H. Hwang, S. M. Ryu, H. G. Seong, and Y. R. Cho, Int. J. Hydro. Ener., Accepted (2018).
  22. G. M. Evans, Welding J., 59-8, 67 (1980).
  23. J. L. Gu, K. D. Chang, H. S. Fang, and B. Z. Bal, ISIJ Int., 42, 1560 (2002). https://doi.org/10.2355/isijinternational.42.1560
  24. C. D. Beachem, Metal. Trans. A, 3, 307 (1972). https://doi.org/10.1007/BF02680610
  25. J. Eastman, F. Heubaum, T. Matsumoto, and H. K. Bimbaum, Acta. Metall., 30, 1579 (1982). https://doi.org/10.1016/0001-6160(82)90178-X
  26. E. Serra, A. Perujo, and G. Benamati, J. Nucl. Mater., 245, 108 (1997). https://doi.org/10.1016/S0022-3115(97)00021-4
  27. H. K. D. H. Bahadeshia, ISIJ. Int., 56, 24 (2016). https://doi.org/10.2355/isijinternational.ISIJINT-2015-430
  28. G. W. Hong and J. Y. Lee, J. Mater. Sci., 18, 271 (1983). https://doi.org/10.1007/BF00543835
  29. G. W. Hong and J. Y. Lee, Metall. Trans. A, 14, 156 (1983). https://doi.org/10.1007/BF02643751
  30. D. G. Enos and J. R. Scully, Metall. Mater. Trans. A, 33, 1151 (2002). https://doi.org/10.1007/s11661-002-0217-z