DOI QR코드

DOI QR Code

Characteristics of electrodeposited bismuth telluride thin films with different crystal growth by adjusting electrolyte temperature and concentration

  • Received : 2018.07.14
  • Accepted : 2018.09.18
  • Published : 2018.12.31

Abstract

Bismuth telluride ($Bi_2Te_3$) thin films were prepared with various electrolyte temperatures ($10^{\circ}C-70^{\circ}C$) and concentrations [$Bi(NO_3)_3$ and $TeO_2:1.25-5.0mM$] in this study. The surface morphologies differed significantly between the experiments in which these two electrodeposition conditions were separately adjusted even though the applied current density was in the same range in both cases. At higher electrolyte temperatures, a dendrite crystal structure appeared on the film surface. However, the surface morphology did not change significantly as the electrolyte concentration increased. The dendrite crystal structure formation in the former case may have been caused by the diffusion lengths of the ions increasing with increasing electrolyte temperature. In such a state, the reactive points primarily occur at the tops of spiked areas, leading to dendrite crystal structure formation. In addition, the in-plane thermoelectric properties of $Bi_2Te_3$ thin films were measured at approximately 300 K. The power factor decreased drastically as the electrolyte temperature increased because of the decrease in electrical conductivity due to the dendrite crystal structure. However, the power factor did not strongly depend on the electrolyte concentration. The highest power factor [$1.08{\mu}W/(cm{\cdot}K^2$)] was obtained at 3.75 mM. Therefore, to produce electrodeposited $Bi_2Te_3$ films with improved thermoelectric performances and relatively high deposition rates, the electrolyte temperature should be relatively low ($30^{\circ}C$) and the electrolyte concentration should be set at 3.75 mM.

Keywords

Acknowledgement

Supported by : JSPS KAKENHI

References

  1. J.A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics, IEEE Pervasive Comput. 4 (2005) 18-27.
  2. L. Franciosoa, C. De Pascali, I. Farella, C. Martucci, P. Creti, P. Siciliano, A. Perrone, Flexible thermoelectric generator for ambient assisted living wearable biometric sensors, J. Power Sources 196 (2011) 3239-3243. https://doi.org/10.1016/j.jpowsour.2010.11.081
  3. R.J.M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof, R. Mertens, Micropower energy harvesting, Solid State Electron 53 (2009) 684-693. https://doi.org/10.1016/j.sse.2008.12.011
  4. D. Miorandi, S. Sicari, F. De Pellegrini, I. Chlamtac, Internet of things: vision, applications and research challenges, Ad Hoc Netw. 10 (2012) 1497-1516. https://doi.org/10.1016/j.adhoc.2012.02.016
  5. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of Things: a survey on enabling, IEEE Commun. Surv. Tutorials 17 (2015) 2347-2376. https://doi.org/10.1109/COMST.2015.2444095
  6. S. Nakajima, The crystal structure of $Bi_2Te_{3-x}Se_x$, J. Phys. Chem. Solids 24 (1963) 479-485. https://doi.org/10.1016/0022-3697(63)90207-5
  7. R. Venkatasubramanian, T. Colpitts, E. Watko, M. Lamvik, N. El-Masry, MOCVD of $Bi_2Te_3$, $Sb_2Te_3$ and their superlattice structures for thin-film thermoelectric applications, J. Cryst. Growth 170 (1997) 817-821. https://doi.org/10.1016/S0022-0248(96)00656-2
  8. M. Takashiri, K. Imai, M. Uyama, H. Hagino, S. Tanaka, K. Miyazaki, Y. Nishi, Comparison of crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te nanocrystalline thin films: effects of homogeneous irradiation with an electron beam, J. Appl. Phys. 115 (2014) 214311. https://doi.org/10.1063/1.4881676
  9. H. Scherrer, S. Scherrer, D.M. Rowe (Ed.), CRC Handbook of Thermoelectrics, CRC Press LLC, Boca Raton, 1995, pp. 211-238.
  10. K. Takayama, M. Takashiri, Multi-layered-stack thermoelectric generators using p-type $Sb_2Te_3$ and n-type $Bi_2Te_3$ thin films by radio-frequency magnetron sputtering, Vacuum 144 (2017) 164-171. https://doi.org/10.1016/j.vacuum.2017.07.030
  11. K. Yildiz, U. Akgul, H.S. Leipner, Y. Atici, Electron microscopy study of thermoelectric n-type $Bi_2(Te_{0.9}Se_{0.1})_3$ film deposited by dc sputtering, Superlattices Microstruct. 58 (2013) 60-71. https://doi.org/10.1016/j.spmi.2013.02.013
  12. D. Bourgault, C. Giroud Garampon, N. Caillault, L. Carbone, J.A. Aymami, Thermoelectric properties of n-type $Bi_2Te_{2.7}Se_{0.3}$ and p-type $Bi_{0.5}Sb_{1.5}Te_3$ thin films deposited by direct current magnetron sputtering, Thin Solid Films 516 (2008) 8579-8583. https://doi.org/10.1016/j.tsf.2008.06.001
  13. M. Takashiri, Y. Asai, K. Yamauchi, Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing, Nanotechnology 27 (2016) 335703. https://doi.org/10.1088/0957-4484/27/33/335703
  14. A.J. Zhou, L.D. Feng, H.G. Cui, J.Z. Li, G.Y. Jiang, X.B. Zhao, Sequential evaporation of Bi-Te thin films with controllable composition and their thermoelectric transport properties, J. Electron. Mater. 42 (2013) 2184-2191. https://doi.org/10.1007/s11664-013-2568-1
  15. M. Takashiri, K. Kurita, H. Hagino, S. Tanaka, K. Miyazaki, Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method, J. Appl. Phys. 118 (2015) 065301. https://doi.org/10.1063/1.4928311
  16. M. Takashiri, S. Tanaka, K. Miyazaki, Growth of single-crystalline bismuth antimony telluride nanoplates on the surface of nanoparticle thin films, J. Cryst. Growth 372 (2013) 199-204. https://doi.org/10.1016/j.jcrysgro.2013.03.028
  17. M. Koyano, S. Mizutani, Y. Hayashi, M. Miyata, T. Tanaka, K. Fukuda, High-oriented thermoelectric nano-bulk fabricated from thermoelectric ink, J. Electron. Mater. 46 (2017) 2873-2879. https://doi.org/10.1007/s11664-016-5016-1
  18. K. Wada, K. Tomita, M. Takashiri, Fabrication of bismuth telluride nanoplates via solvothermal synthesis using different alkalis and nanoplate thin films by printing method, J. Cryst. Growth 468 (2017) 194-198. https://doi.org/10.1016/j.jcrysgro.2016.12.048
  19. J. Kuleshova, E. Koukharenko, X. Li, N. Frety, I.S. Nandhakumar, J. Tubor, S.P. Beeby, N.M. White, Optimization of the electrodeposition process of high-performance bismuth antimony telluride compounds for thermoelectric applications, Langmuir 26 (2010) 16980-16985. https://doi.org/10.1021/la101952y
  20. S.K. Lim, M.Y. Kim, T.S. Oh, Thermoelectric properties of the bismuth-antimony-telluride and the antimony-telluride films processed by electrodeposition for micro-device applications, Thin Solid Films 517 (2009) 14-29.
  21. K. Matsuoka, M. Okuhata, M. Takashiri, Dual-bath electrodeposition of n-type Bi-Te/Bi-Se multilayer thin films, J. Alloys Compd. 649 (2015) 721-725. https://doi.org/10.1016/j.jallcom.2015.07.166
  22. M. Takahashi, Y. Katou, K. Nagata, S. Furuta, The composition and conductivity of electrodeposited Bi-Te alloy films, Thin Solid Films 240 (1994) 70-72. https://doi.org/10.1016/0040-6090(94)90696-3
  23. C. Boulanger, Thermoelectric material electroplating: a historical review, J. Electron. Mater. 39 (2010) 1818-1827. https://doi.org/10.1007/s11664-010-1079-6
  24. F. Xiao, C. Hangarter, B. Yoo, Y. Rheem, K.H. Lee, N.V. Myung, Recent progress in electrodeposition of thermoelectric thin films and nanostructures, Electrochim. Acta 53 (2008) 8103-8117. https://doi.org/10.1016/j.electacta.2008.06.015
  25. N. Hatsuta, D. Takemori, M. Takashiri, Effect of thermal annealing on the structural and thermoelectric properties of electrodeposited antimony telluride thin films, J. Alloys Compd. 685 (2016) 147-152. https://doi.org/10.1016/j.jallcom.2016.05.268
  26. S. Bae, H. Kim, H.S. Lee, Formation mechanism of PbTe dendritic nanostructures grown by electrodeposition, Mater. Chem. Phys. 187 (2017) 82-87. https://doi.org/10.1016/j.matchemphys.2016.11.050
  27. K. Matsuoka, M. Okuhata, N. Hatsuta, M. Takashiri, Effect of composition on the properties of bismuth telluride thin films produced by galvanostatic electrodeposition, Trans. Mater. Res. Soc. Jpn. 40 (2015) 383-387. https://doi.org/10.14723/tmrsj.40.383
  28. M. Okuhata, D. Takemori, M. Takashiri, Effect of pulse frequency on structural and thermoelectric properties of bismuth telluride thin films by electrodeposition, ECS Trans. 75 (2017) 133-141.
  29. C.V. Manzano, B. Abad, M.M. Rojo, Y.R. Koh, S.L. Hodson, A.M.L. Martinez, X. Xu, Shakouri Ali, T.D. Sands, T. Borca-Tasciuc, M. Martin-Gonzalez, Anisotropic effects on the thermoelectric properties of highly oriented electrodeposited $Bi_2Te_3$ films, Sci. Rep. 6 (2016) 19129. https://doi.org/10.1038/srep19129
  30. Y. Miyazaki, T. Kajitani, Preparation of $Bi_2Te_3$ films by electrodeposition, J. Cryst. Growth 229 (2001) 542-546. https://doi.org/10.1016/S0022-0248(01)01225-8
  31. F.K. Lotgering, Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I, J. Inorg. Nucl. Chem. 9 (1959) 113-123. https://doi.org/10.1016/0022-1902(59)80070-1
  32. S. Michel, S. Diliberto, C. Boulanger, N. Stein, J.M. Lecuire, Galvanostatic and potentiostatic deposition of bismuth telluride films from nitric acid solution: effect of chemical and electrochemical parameters, J. Cryst. Growth 277 (2005) 274-283. https://doi.org/10.1016/j.jcrysgro.2004.12.164
  33. A.J. Naylor, E. Koukharenko, I.S. Nandhakumar, N.M. White, Surfactant-mediated electrodeposition of bismuth telluride films and its effect on microstructural properties, Langmuir 28 (2012) 8296-8299. https://doi.org/10.1021/la301367m
  34. M. Takahashi, Y. Oda, T. Ogino, S. Furuta, Electrodeposition of Bi-Te alloy films, J. Electrochem. Soc. 140 (1993) 2550-2553. https://doi.org/10.1149/1.2220860
  35. S. Morikawa, Y. Satake, M. Takashiri, Characteristics of nanostructured bismuth telluride thin films fabricated by oblique deposition, Vacuum 148 (2018) 296-302. https://doi.org/10.1016/j.vacuum.2017.11.035
  36. H. Obara, S. Higomo, M. Ohta, A. Yamamoto, K. Ueno, T. Iida, Thermoelectric properties of $Bi_2Te_3$-based thin films with fine grains fabricated by pulsed laser deposition, Jpn. J. Appl. Phys. 48 (2009) 085506. https://doi.org/10.1143/JJAP.48.085506
  37. C.-N. Liao, Y.C. Wang, H.-S. Chu, Thermal transport properties of nanocrystalline Bi-Sb-Te thin films prepared by sputter deposition, J. Appl. Phys. 104 (2008) 104312. https://doi.org/10.1063/1.3026728
  38. Z.H. Zheng, P. Fan, T.B. Chen, Z.K. Cai, P.J. Liu, G.X. Liang, D.P. Zhang, X.M. Cai, Optimization in fabricating bismuth telluride thin films by ion beam sputtering deposition, Thin Solid Films 520 (2012) 5245-5248. https://doi.org/10.1016/j.tsf.2012.03.086
  39. M. Takashiri, S. Tanaka, K. Miyazaki, Determination of the origin of crystal orientation for nanocrystalline bismuth telluride-based thin films prepared by use of the flash evaporation method, J. Electron. Mater. 43 (2014) 1881-1889. https://doi.org/10.1007/s11664-013-2896-1
  40. X. Duan, Y. Jiang, Annealing effects on the structural and electrical transport properties of n-type $Bi_2Te_{2.7}Se_{0.3}$ thin films deposited by flash evaporation, Appl. Surf. Sci. 256 (2010) 7365-7370. https://doi.org/10.1016/j.apsusc.2010.05.069
  41. M. Takashiri, J. Hamada, Bismuth antimony telluride thin films with unique crystal orientation by two-step method, J. Alloys Compd. 683 (2016) 276-281. https://doi.org/10.1016/j.jallcom.2016.05.058
  42. K. Yamauchi, M. Takashiri, Highly oriented crystal growth of nanocrystalline bismuth telluride thin films with anisotropic thermoelectric properties using two-step treatment, J. Alloys Compd. 698 (2017) 977-983. https://doi.org/10.1016/j.jallcom.2016.12.284

Cited by

  1. High‐Performance Flexible Bismuth Telluride Thin Film from Solution Processed Colloidal Nanoplates vol.5, pp.11, 2018, https://doi.org/10.1002/admt.202000600
  2. Hetero-interfaced films composed of solvothermally synthesized Bi2Te3 nanoplates covered with electrodeposited Bi2Se3 layers vol.741, pp.None, 2018, https://doi.org/10.1016/j.tsf.2021.139032
  3. In- and cross-plane thermoelectric properties of oriented Bi2Te3 thin films electrodeposited on an insulating substrate for thermoelectric applications vol.899, pp.None, 2022, https://doi.org/10.1016/j.jallcom.2021.163317