Acknowledgement
Supported by : JSPS KAKENHI
References
- J.A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics, IEEE Pervasive Comput. 4 (2005) 18-27.
- L. Franciosoa, C. De Pascali, I. Farella, C. Martucci, P. Creti, P. Siciliano, A. Perrone, Flexible thermoelectric generator for ambient assisted living wearable biometric sensors, J. Power Sources 196 (2011) 3239-3243. https://doi.org/10.1016/j.jpowsour.2010.11.081
- R.J.M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof, R. Mertens, Micropower energy harvesting, Solid State Electron 53 (2009) 684-693. https://doi.org/10.1016/j.sse.2008.12.011
- D. Miorandi, S. Sicari, F. De Pellegrini, I. Chlamtac, Internet of things: vision, applications and research challenges, Ad Hoc Netw. 10 (2012) 1497-1516. https://doi.org/10.1016/j.adhoc.2012.02.016
- A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of Things: a survey on enabling, IEEE Commun. Surv. Tutorials 17 (2015) 2347-2376. https://doi.org/10.1109/COMST.2015.2444095
-
S. Nakajima, The crystal structure of
$Bi_2Te_{3-x}Se_x$ , J. Phys. Chem. Solids 24 (1963) 479-485. https://doi.org/10.1016/0022-3697(63)90207-5 -
R. Venkatasubramanian, T. Colpitts, E. Watko, M. Lamvik, N. El-Masry, MOCVD of
$Bi_2Te_3$ ,$Sb_2Te_3$ and their superlattice structures for thin-film thermoelectric applications, J. Cryst. Growth 170 (1997) 817-821. https://doi.org/10.1016/S0022-0248(96)00656-2 - M. Takashiri, K. Imai, M. Uyama, H. Hagino, S. Tanaka, K. Miyazaki, Y. Nishi, Comparison of crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te nanocrystalline thin films: effects of homogeneous irradiation with an electron beam, J. Appl. Phys. 115 (2014) 214311. https://doi.org/10.1063/1.4881676
- H. Scherrer, S. Scherrer, D.M. Rowe (Ed.), CRC Handbook of Thermoelectrics, CRC Press LLC, Boca Raton, 1995, pp. 211-238.
-
K. Takayama, M. Takashiri, Multi-layered-stack thermoelectric generators using p-type
$Sb_2Te_3$ and n-type$Bi_2Te_3$ thin films by radio-frequency magnetron sputtering, Vacuum 144 (2017) 164-171. https://doi.org/10.1016/j.vacuum.2017.07.030 -
K. Yildiz, U. Akgul, H.S. Leipner, Y. Atici, Electron microscopy study of thermoelectric n-type
$Bi_2(Te_{0.9}Se_{0.1})_3$ film deposited by dc sputtering, Superlattices Microstruct. 58 (2013) 60-71. https://doi.org/10.1016/j.spmi.2013.02.013 -
D. Bourgault, C. Giroud Garampon, N. Caillault, L. Carbone, J.A. Aymami, Thermoelectric properties of n-type
$Bi_2Te_{2.7}Se_{0.3}$ and p-type$Bi_{0.5}Sb_{1.5}Te_3$ thin films deposited by direct current magnetron sputtering, Thin Solid Films 516 (2008) 8579-8583. https://doi.org/10.1016/j.tsf.2008.06.001 - M. Takashiri, Y. Asai, K. Yamauchi, Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing, Nanotechnology 27 (2016) 335703. https://doi.org/10.1088/0957-4484/27/33/335703
- A.J. Zhou, L.D. Feng, H.G. Cui, J.Z. Li, G.Y. Jiang, X.B. Zhao, Sequential evaporation of Bi-Te thin films with controllable composition and their thermoelectric transport properties, J. Electron. Mater. 42 (2013) 2184-2191. https://doi.org/10.1007/s11664-013-2568-1
- M. Takashiri, K. Kurita, H. Hagino, S. Tanaka, K. Miyazaki, Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method, J. Appl. Phys. 118 (2015) 065301. https://doi.org/10.1063/1.4928311
- M. Takashiri, S. Tanaka, K. Miyazaki, Growth of single-crystalline bismuth antimony telluride nanoplates on the surface of nanoparticle thin films, J. Cryst. Growth 372 (2013) 199-204. https://doi.org/10.1016/j.jcrysgro.2013.03.028
- M. Koyano, S. Mizutani, Y. Hayashi, M. Miyata, T. Tanaka, K. Fukuda, High-oriented thermoelectric nano-bulk fabricated from thermoelectric ink, J. Electron. Mater. 46 (2017) 2873-2879. https://doi.org/10.1007/s11664-016-5016-1
- K. Wada, K. Tomita, M. Takashiri, Fabrication of bismuth telluride nanoplates via solvothermal synthesis using different alkalis and nanoplate thin films by printing method, J. Cryst. Growth 468 (2017) 194-198. https://doi.org/10.1016/j.jcrysgro.2016.12.048
- J. Kuleshova, E. Koukharenko, X. Li, N. Frety, I.S. Nandhakumar, J. Tubor, S.P. Beeby, N.M. White, Optimization of the electrodeposition process of high-performance bismuth antimony telluride compounds for thermoelectric applications, Langmuir 26 (2010) 16980-16985. https://doi.org/10.1021/la101952y
- S.K. Lim, M.Y. Kim, T.S. Oh, Thermoelectric properties of the bismuth-antimony-telluride and the antimony-telluride films processed by electrodeposition for micro-device applications, Thin Solid Films 517 (2009) 14-29.
- K. Matsuoka, M. Okuhata, M. Takashiri, Dual-bath electrodeposition of n-type Bi-Te/Bi-Se multilayer thin films, J. Alloys Compd. 649 (2015) 721-725. https://doi.org/10.1016/j.jallcom.2015.07.166
- M. Takahashi, Y. Katou, K. Nagata, S. Furuta, The composition and conductivity of electrodeposited Bi-Te alloy films, Thin Solid Films 240 (1994) 70-72. https://doi.org/10.1016/0040-6090(94)90696-3
- C. Boulanger, Thermoelectric material electroplating: a historical review, J. Electron. Mater. 39 (2010) 1818-1827. https://doi.org/10.1007/s11664-010-1079-6
- F. Xiao, C. Hangarter, B. Yoo, Y. Rheem, K.H. Lee, N.V. Myung, Recent progress in electrodeposition of thermoelectric thin films and nanostructures, Electrochim. Acta 53 (2008) 8103-8117. https://doi.org/10.1016/j.electacta.2008.06.015
- N. Hatsuta, D. Takemori, M. Takashiri, Effect of thermal annealing on the structural and thermoelectric properties of electrodeposited antimony telluride thin films, J. Alloys Compd. 685 (2016) 147-152. https://doi.org/10.1016/j.jallcom.2016.05.268
- S. Bae, H. Kim, H.S. Lee, Formation mechanism of PbTe dendritic nanostructures grown by electrodeposition, Mater. Chem. Phys. 187 (2017) 82-87. https://doi.org/10.1016/j.matchemphys.2016.11.050
- K. Matsuoka, M. Okuhata, N. Hatsuta, M. Takashiri, Effect of composition on the properties of bismuth telluride thin films produced by galvanostatic electrodeposition, Trans. Mater. Res. Soc. Jpn. 40 (2015) 383-387. https://doi.org/10.14723/tmrsj.40.383
- M. Okuhata, D. Takemori, M. Takashiri, Effect of pulse frequency on structural and thermoelectric properties of bismuth telluride thin films by electrodeposition, ECS Trans. 75 (2017) 133-141.
-
C.V. Manzano, B. Abad, M.M. Rojo, Y.R. Koh, S.L. Hodson, A.M.L. Martinez, X. Xu, Shakouri Ali, T.D. Sands, T. Borca-Tasciuc, M. Martin-Gonzalez, Anisotropic effects on the thermoelectric properties of highly oriented electrodeposited
$Bi_2Te_3$ films, Sci. Rep. 6 (2016) 19129. https://doi.org/10.1038/srep19129 -
Y. Miyazaki, T. Kajitani, Preparation of
$Bi_2Te_3$ films by electrodeposition, J. Cryst. Growth 229 (2001) 542-546. https://doi.org/10.1016/S0022-0248(01)01225-8 - F.K. Lotgering, Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I, J. Inorg. Nucl. Chem. 9 (1959) 113-123. https://doi.org/10.1016/0022-1902(59)80070-1
- S. Michel, S. Diliberto, C. Boulanger, N. Stein, J.M. Lecuire, Galvanostatic and potentiostatic deposition of bismuth telluride films from nitric acid solution: effect of chemical and electrochemical parameters, J. Cryst. Growth 277 (2005) 274-283. https://doi.org/10.1016/j.jcrysgro.2004.12.164
- A.J. Naylor, E. Koukharenko, I.S. Nandhakumar, N.M. White, Surfactant-mediated electrodeposition of bismuth telluride films and its effect on microstructural properties, Langmuir 28 (2012) 8296-8299. https://doi.org/10.1021/la301367m
- M. Takahashi, Y. Oda, T. Ogino, S. Furuta, Electrodeposition of Bi-Te alloy films, J. Electrochem. Soc. 140 (1993) 2550-2553. https://doi.org/10.1149/1.2220860
- S. Morikawa, Y. Satake, M. Takashiri, Characteristics of nanostructured bismuth telluride thin films fabricated by oblique deposition, Vacuum 148 (2018) 296-302. https://doi.org/10.1016/j.vacuum.2017.11.035
-
H. Obara, S. Higomo, M. Ohta, A. Yamamoto, K. Ueno, T. Iida, Thermoelectric properties of
$Bi_2Te_3$ -based thin films with fine grains fabricated by pulsed laser deposition, Jpn. J. Appl. Phys. 48 (2009) 085506. https://doi.org/10.1143/JJAP.48.085506 - C.-N. Liao, Y.C. Wang, H.-S. Chu, Thermal transport properties of nanocrystalline Bi-Sb-Te thin films prepared by sputter deposition, J. Appl. Phys. 104 (2008) 104312. https://doi.org/10.1063/1.3026728
- Z.H. Zheng, P. Fan, T.B. Chen, Z.K. Cai, P.J. Liu, G.X. Liang, D.P. Zhang, X.M. Cai, Optimization in fabricating bismuth telluride thin films by ion beam sputtering deposition, Thin Solid Films 520 (2012) 5245-5248. https://doi.org/10.1016/j.tsf.2012.03.086
- M. Takashiri, S. Tanaka, K. Miyazaki, Determination of the origin of crystal orientation for nanocrystalline bismuth telluride-based thin films prepared by use of the flash evaporation method, J. Electron. Mater. 43 (2014) 1881-1889. https://doi.org/10.1007/s11664-013-2896-1
-
X. Duan, Y. Jiang, Annealing effects on the structural and electrical transport properties of n-type
$Bi_2Te_{2.7}Se_{0.3}$ thin films deposited by flash evaporation, Appl. Surf. Sci. 256 (2010) 7365-7370. https://doi.org/10.1016/j.apsusc.2010.05.069 - M. Takashiri, J. Hamada, Bismuth antimony telluride thin films with unique crystal orientation by two-step method, J. Alloys Compd. 683 (2016) 276-281. https://doi.org/10.1016/j.jallcom.2016.05.058
- K. Yamauchi, M. Takashiri, Highly oriented crystal growth of nanocrystalline bismuth telluride thin films with anisotropic thermoelectric properties using two-step treatment, J. Alloys Compd. 698 (2017) 977-983. https://doi.org/10.1016/j.jallcom.2016.12.284
Cited by
- High‐Performance Flexible Bismuth Telluride Thin Film from Solution Processed Colloidal Nanoplates vol.5, pp.11, 2018, https://doi.org/10.1002/admt.202000600
- Hetero-interfaced films composed of solvothermally synthesized Bi2Te3 nanoplates covered with electrodeposited Bi2Se3 layers vol.741, pp.None, 2018, https://doi.org/10.1016/j.tsf.2021.139032
- In- and cross-plane thermoelectric properties of oriented Bi2Te3 thin films electrodeposited on an insulating substrate for thermoelectric applications vol.899, pp.None, 2022, https://doi.org/10.1016/j.jallcom.2021.163317