DOI QR코드

DOI QR Code

Effects of strain on the optical and magnetic properties of Ce-doped ZnO

  • Xu, Zhenchao (College of Materials Science and Engineering, Inner Mongolia University of Technology) ;
  • Hou, Qingyu (College of Science, Inner Mongolia University of Technology) ;
  • Guo, Feng (College of Materials Science and Engineering, Inner Mongolia University of Technology) ;
  • Jia, Xiaofang (College of Science, Inner Mongolia University of Technology) ;
  • Li, Cong (College of Science, Inner Mongolia University of Technology) ;
  • Li, Wenling (College of Science, Inner Mongolia University of Technology)
  • Received : 2018.06.20
  • Accepted : 2018.08.28
  • Published : 2018.12.31

Abstract

The magnetic and optical properties of Ce-doped ZnO systems have been widely demonstrated, but the effects of different strains of Ce-doped ZnO systems remain unclear. To solve these problems, this study identified the effects of biaxial strain on the electronic structure, absorption spectrum, and magnetic properties of Ce-doped ZnO systems by using a generalized gradient approximation + U (GGA + U) method with plane wave pseudopotential. Under unstrained conditions, the formation energy decreased, the system became stable, and the doping process became easy with the increase in the distances between two Ce atoms. The band gap of the systems with different strains became narrower than that of undoped ZnO without strain, and the absorption spectra showed a red shift. The band gap narrowed, and the red shift became weak with the increase of compressive strain. By contrast, the band gap widened, and the red shift became significant with the increase of tensile strain. The red shift was significant when the tensile strain was 3%. The systems with -1%, 0%, and 1% strains were ferromagnetic. For the first time, the magnetic moment of the system with -1% strain was found to be the largest, and the system showed the greatest beneficial value for diluted magnetic semiconductors. The systems with -3%, -2%, 2%, and 3% strains were non-magnetic, and they had no value for diluted magnetic semiconductors. The ferromagnetism of the system with -1% strain was mainly caused by the hybrid coupling of Ce-4f, Ce-5d, and O-2p orbits. This finding was consistent with Zener's Ruderman-Kittel-Kasuya-Yosida theory. The results can serve as a reference for the design and preparation of new diluted magnetic semiconductors and optical functional materials.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. R.C. Rai, Analysis of the Urbach tails in absorption spectra of undoped ZnO thin films, J. Appl. Phys. 113 (2013) 383-386.
  2. O. Lupan, T. Pauporte, B. Viana, P. Aschehoug, M. Ahmadi, B.R. Cuenya, Y. Rudzevich, Y. Lin, L. Chow, Eu-doped ZnO nanowire arrays grown by electrodeposition, Appl. Surf. Sci. 282 (2013) 782-788. https://doi.org/10.1016/j.apsusc.2013.06.053
  3. K. Senthilkumar, T. Yoshida, Y. Fujita, Formation of $D-V_{Zn}$ complex defects and possible p-type conductivity of ZnO nanoparticle via hydrogen adsorption, J. Mater. Sci. 53 (2018) 11977-11985. https://doi.org/10.1007/s10853-018-2498-7
  4. S.T. Tan, X.W. Sun, Z.G. Yu, P. Wu, G.Q. Lo, D.L. Kwong, p-type conduction in unintentional carbon-doped ZnO thin films, Appl. Phys. Lett. 91 (2007) 072101. https://doi.org/10.1063/1.2768917
  5. K. Li, F. Lu, R. Fan, C. Ma, B. Xu, Effect of Er local surrounding on photoluminescence of Si Er co-doped ZnO film, J. Lumin. 200 (2018) 9-13. https://doi.org/10.1016/j.jlumin.2018.03.064
  6. N. Elkhoshkhany, O. Essam, A.M. Embaby, Optical, thermal and antibacterial properties of tellurite glass system doped with ZnO, Mater. Chem. Phys. 214 (2018) 489-498. https://doi.org/10.1016/j.matchemphys.2018.05.007
  7. P. Murkute, S. Vatsa, H. Ghadi, S. Saha, S. Chakrabarti, Role of Pzn-2Vzn centre on the luminescence properties of phosphorus doped ZnO thin films by varying doping concentration, J. Lumin. 200 (2018) 120-125. https://doi.org/10.1016/j.jlumin.2018.04.002
  8. X.C. Wang, W.B. Mi, S. Dong, X.M. Chen, B.H. Yang, Microstructure and optical properties of N-incorporated polycrystalline ZnO films, J. Alloys Compd. 478 (2009) 507-512. https://doi.org/10.1016/j.jallcom.2008.11.075
  9. L. Yang, J. Yang, Q. Guan, L. Yang, Y. Zhang, Y. Wang, B. Feng, J. Cao, X. Liu, Y. Yang, M. Wei, Effects of Cr-doping on the optical and magnetic properties in ZnO nanoparticles prepared by sol-gel method, J. Alloys Compd. 486 (2009) 835-838. https://doi.org/10.1016/j.jallcom.2009.07.076
  10. K. Ueda, H. Tabata, T. Kawai, Magnetic and electric properties of transition-metal-doped ZnO films, Appl. Phys. Lett. 79 (2001) 988-990. https://doi.org/10.1063/1.1384478
  11. B.B. Straumal, S.G. Protasova, A.A. Mazilkin, T. Tietze, E. Goering, G. Schutz, P.B. Straumal, B. Baretzky, Ferromagnetic behaviour of Fe-doped ZnO nanograined films, Beilstein J. Nanotechnol. 4 (2013) 361-369. https://doi.org/10.3762/bjnano.4.42
  12. X.C. Wanga, W.B. Mi, D.F. Kuang, Microstructure, magnetic and optical properties of sputtered polycrystalline ZnO films with Fe addition, Appl. Surf. Sci. 256 (2010) 1930-1935. https://doi.org/10.1016/j.apsusc.2009.10.040
  13. J.H. Zheng, J.L. Song, X.J. Li, Q. Jiang, J.S. Lian, Experimental and first-principle investigation of Cu-doped ZnO ferromagnetic powders, Cryst. Res. Technol. 46 (2011) 1143-1148. https://doi.org/10.1002/crat.201100397
  14. J.A. Sans, J.F. Sanchez-Royo, A. Segura, G. Tobias, E. Canadell, Chemical effects on the optical band-gap of heavily doped ZnO:$M_{III}$ (M=Al,Ga,In): an investigation by means of photoelectron spectroscopy, optical measurements under pressure, and band structure calculations, Phys. Rev. B Condens. Matter 79 (2009) 195105. https://doi.org/10.1103/PhysRevB.79.195105
  15. A.Y. Li, X.D. Li, Q.B. Lin, S.Q. Wu, Z.Z. Zhu, Half-metallic ferromagnetism in Ag-doped ZnO: an ab initio study, Solid State Sci. 14 (2012) 769-772. https://doi.org/10.1016/j.solidstatesciences.2012.04.002
  16. W.B. Mi, H.L. Bai, Microstructure, magnetic, and optical properties of sputtered Mn-doped ZnO films with high-temperature ferromagnetism, J. Appl. Phys. 101 (2007) 023904. https://doi.org/10.1063/1.2426377
  17. Y.G. Zhang, G.B. Zhang, Y.X. Wang, First-principles study of the electronic structure and optical properties of Ce-doped ZnO, J. Appl. Phys. 109 (2011) 063510. https://doi.org/10.1063/1.3561436
  18. D. Wang, Q. Chen, G. Xing, G. Xing, J. Yi, S.R. Bakaul, J. Ding, J. Wang, T. Wu, Robust room-temperature ferromagnetism with giant anisotropy in Nd-Doped ZnO nanowire arrays, Nano Lett. 12 (2012) 3994-4000. https://doi.org/10.1021/nl301226k
  19. O. Yayapao, T. Thongtem, A. Phuruangrat, S. Thongtem, Sonochemical synthesis of Dy-doped ZnO nanostructures and their photocatalytic properties, J. Alloys Compd. 576 (2013) 72-79. https://doi.org/10.1016/j.jallcom.2013.04.133
  20. M. Akyol, A. Ekicibil, K. Kiymac, AC-magnetic susceptibility of Dy doped ZnO compounds, J. Magn. Magn Mater. 385 (2015) 65-69. https://doi.org/10.1016/j.jmmm.2015.03.010
  21. M.M. Mezdrogina, A.Y. Vinogradov, M.V. Eremenko, Intensity of visible and IR emission of intracenter 4 f, transitions of RE ions in Er- and Tm-doped ZnO films with additional Ag, Li, and N impurities, Optic Spectrosc. 121 (2016) 220-228. https://doi.org/10.1134/S0030400X16080154
  22. J. Iqbal, X. Liu, H. Zhu, C. Pan, Y. Zhang, D. Yu, R. Yu, Trapping of Ce electrons in band gap and room temperature ferromagnetism of $Ce^{4+}$ doped ZnO nanowires, J. Appl. Phys. 106 (2009) 083515. https://doi.org/10.1063/1.3245325
  23. O. Bechambi, L. Jlaiel, W. Najjar, S. Sayadi, Photocatalytic degradation of bisphenol A in the presence of Ce-ZnO: evolution of kinetics, toxicity and photodegradation mechanism, Mater. Chem. Phys. 173 (2016) 95-105. https://doi.org/10.1016/j.matchemphys.2016.01.044
  24. Y.H. Lee, D.H. Kim, T.W. Kim, Efficiency enhancement of inverted organic photovoltaic cells due to an embedded Ce-doped ZnO electron transport layer synthesized by using a sol-gel process, J. Sol. Gel Sci. Technol. 76 (2015) 644-650. https://doi.org/10.1007/s10971-015-3816-z
  25. N. Sinha, G. Ray, S. Bhandari, S. Godara, B. Kumar, Synthesis and enhanced properties of cerium doped ZnO nanorods, Ceram. Int. 40 (2014) 12337-12342. https://doi.org/10.1016/j.ceramint.2014.04.079
  26. D.K. Sharma, K.K. Sharma, V. Kumxar, A. Sharma, Effect of Ce doping on the structural, optical and magnetic properties of ZnO nanoparticles, J. Mater. Sci. Mater. Electron. 27 (2016) 10330-10335. https://doi.org/10.1007/s10854-016-5117-x
  27. X.J. Zhang, W.B. Mi, X.C. Wang, H.L. Bai, First-principles prediction of electronic structure and magnetic ordering of rare-earth metals doped ZnO, J. Alloys Compd. 617 (2014) 828-833. https://doi.org/10.1016/j.jallcom.2014.07.218
  28. A.G. El Hachimi, H. Zaari, A. Benyoussef, M. El Yadari, A. El Kenz, First-principles prediction of the magnetism of 4f rare-earth-metal-doped wurtzite zinc oxide, J. Rare Earths 32 (2014) 715-721. https://doi.org/10.1016/S1002-0721(14)60131-9
  29. C. Tan, D. Xu, K. Zhang, X. Tian, W. Cai, Electronic and magnetic properties of rareearth metals doped ZnO monolayer, J. Nanomater. 2015 (2015) 1-8.
  30. M.S. Miao, W.R.L. Lambrecht, Effects of biaxial strain on stability and half-metallicity of Cr and Mn pnictides and chalcogenides in the zinc-blende structure, Phys. Rev. B 72 (2005) 064409. https://doi.org/10.1103/PhysRevB.72.064409
  31. Y.J. Zhao, A. Zunger, Zinc-blende half-metallic ferromagnets are rarely stabilized by coherent epitaxy, Phys. Rev. B 71 (2005) 132403. https://doi.org/10.1103/PhysRevB.71.132403
  32. D. Huang, Y.J. Zhao, L.J. Chen, D.H. Chen, Y.Z. Shao, Structural instability of epitaxial zinc-blende vanadium pnictides and chalcogenides for half-metallic ferromagnets, J. Appl. Phys. 104 (2008) 053709. https://doi.org/10.1063/1.2973203
  33. R. Mariappan, V. Ponnuswamy, P. Suresh, R. Suresh, M. Ragavendar, A.C. Bose, Nanostructured $Ce_xZn_{1-x}O$ thin films: influence of Ce doping on the structural, optical and electrical properties, J. Alloys Compd. 588 (2014) 170-176. https://doi.org/10.1016/j.jallcom.2013.10.210
  34. X. Ma, Y. Wu, Y. Lv, Y. Zhu, Correlation effects on lattice relaxation and electronic structure of ZnO within the GGA+U formalism, J. Phys. Chem. C 117 (2013) 26029-26039. https://doi.org/10.1021/jp407281x
  35. J.V. Foreman1, J.G. Simmons Jr., W.E. Baughman, J. Liu, H.O. Everitt1, Localized excitons mediate defect emission in ZnO powders, J. Appl. Phys. 113 (2013) 041301.
  36. S.K. Shukla, E.S. Agorku, H. Mittal, A.K. Mishra, Synthesis, characterization and photoluminescence properties of $Ce^{3+}$-doped ZnO-nanophosphors, Chem. Pap. 68 (2014) 217-222.
  37. O. Bechambi, A. Touati, S. Sayadi, W. Najjar, Effect of cerium doping on the textural, structural and optical properties of zinc oxide: role of cerium and hydrogen peroxide to enhance the photocatalytic degradation of endocrine disrupting compounds, Mater. Sci. Semicond. Process. 39 (2015) 807-816. https://doi.org/10.1016/j.mssp.2015.05.052
  38. M. Li, J. Zhang, Y. Zhang, First-principles calculation of compensated (2N, W) co-doping impacts on band gap engineering in anatase $TiO_2$, Chem. Phys. Lett. 527 (2012) 63-66. https://doi.org/10.1016/j.cplett.2012.01.009
  39. A.P. Roth, J.B. Webb, D.F. Williams, Absorption edge shift in ZnO thin films at high Carrier densities, Solid State Commun. 39 (1981) 1269-1271. https://doi.org/10.1016/0038-1098(81)90224-6
  40. J. Wang, T. Fang, L. Zhang, J. Feng, Z. Li, Z. Zou, Effects of oxygen doping on optical band gap and band edge positions of $Ta_3N_5$ photocatalyst: a GGA+ U calculation, J. Catal. 309 (2014) 291-299. https://doi.org/10.1016/j.jcat.2013.10.014
  41. S.C. Jain, J.M. McGregor, D.J. Roulston, Band-gap narrowing in novel III-V semiconductors, J. Appl. Phys. 68 (1990) 3747-3749. https://doi.org/10.1063/1.346291
  42. J.M.D. Coey, M. Venkatesan, Half-metallic ferromagnetism: example of $CrO_2$, J. Appl. Phys. 91 (2002) 8345-8350. https://doi.org/10.1063/1.1447879
  43. K. Sato, P.H. Dederichs, Y.H. Katayama, Curie temperatures of III-V diluted magnetic semiconductors calculated from first principles, Europhys. Lett. 61 (2003) 403-408. https://doi.org/10.1209/epl/i2003-00191-8
  44. K. Sato, L. Bergqvist, J. Kudrnovsky, P.H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V.A. Dinh, T. Fukushima, H. Kizaki, R. Zeller, First-principles theory of dilute magnetic semiconductors, Rev. Mod. Phys. 82 (2010) 1633-1690. https://doi.org/10.1103/RevModPhys.82.1633
  45. C. Theivarasu, T. Indumathi, Effect of rare earth metal ion $Ce^{3+}$, on the structural, optical and magnetic properties of ZnO nanoparticles synthesized by the co-precipitation method, J. Mater. Sci. Mater. Electron. 28 (2017) 3664-3671. https://doi.org/10.1007/s10854-016-5971-6
  46. C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure, Phys. Rev. 82 (1951) 403-405. https://doi.org/10.1103/PhysRev.82.403

Cited by

  1. Effects of Ce incorporation on the structural, morphological, optical, magnetic, and photocatalytic characteristics of ZnO nanoparticles vol.6, pp.12, 2018, https://doi.org/10.1088/2053-1591/ab5a1d
  2. Structural, morphological and Raman scattering studies of pure and Ce-doped ZnO nanostructures elaborated by hydrothermal route using nonorganic precursor vol.95, pp.1, 2018, https://doi.org/10.1007/s10971-020-05293-0
  3. Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12 * vol.30, pp.9, 2021, https://doi.org/10.1088/1674-1056/ac0cdb
  4. First principles study of carrier activity, lifetime and absorption spectrum to investigate effects of strain on the photocatalytic performance of doped ZnO vol.33, pp.None, 2018, https://doi.org/10.1016/j.cap.2021.09.012