DOI QR코드

DOI QR Code

Simultaneous regulation of photoabsorption and ferromagnetism of NaTaO3 by Fe doping

  • Yang, Huan (School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education) ;
  • Zhang, Liguo (School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education) ;
  • Yu, Lifang (School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education) ;
  • Wang, Fang (School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education) ;
  • Ma, Zhenzhen (School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education) ;
  • Zhou, Jie (School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education) ;
  • Xu, Xiaohong (School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education)
  • Received : 2018.05.31
  • Accepted : 2018.08.13
  • Published : 2018.11.30

Abstract

$NaTa_{1-x}Fe_xO_3$ ($0{\leq}x{\leq}0.40$) nanocubes were synthesized by a relatively low temperature hydrothermal method, using $Ta_2O_5$, $FeCl_3$ and NaOH as the precursors. The UV-vis diffuse reflectance spectra showed that $NaTa_{1-x}Fe_xO_3$ had significant visible-light-absorbing capability, and the absorption edge of $NaTaO_3$ shifted to longer wavelength with the increase of Fe dopants. Moreover, $NaTa_{1-x}Fe_xO_3$ exhibited room-temperature ferromagnetism when $Fe^{3+}$ occupied $Ta^{5+}$ sites in $NaTaO_3$ crystal lattice. The ferromagnetism is mainly attributed to the superexchange interactions between doped $Fe^{3+}$, rather than the contribution of oxygen vacancies caused by Fe doping. Therefore, Fe doping can simultaneously regulate the optical and magnetic properties of $NaTaO_3$ semiconductor, which will enable its potential applications in multifunctional optical-electronics and opticalspintronics devices.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. M. Valant, T. Kolodiazhnyi, I. Arcon, F. Aguesse, A.K. Axelsson, N.M. Alford, Adv. Funct. Mater. 22 (2012) 2114-2122. https://doi.org/10.1002/adfm.201102482
  2. L. Yin, X.C. Wang, W.B. Mi, ACS Appl. Mater. Interfaces 10 (2018) 3822-3829. https://doi.org/10.1021/acsami.7b18379
  3. W.Z. Si, Y. Wang, Y. Peng, J.H. Li, Angew. Chem. Int. Ed. 127 (2015) 8065-8068. https://doi.org/10.1002/ange.201502632
  4. L. Wang, J. Li, M.J. Feng, L.F. Min, J. Yang, S.H. Yu, Y.C. Zhang, X.Y. Hu, Z.J. Yang, Biosens. Bioelectron. 810 (2018) 95-99.
  5. F.F. Li, D.R. Liu, G.M. Gao, B. Xue, Y.S. Jiang, Appl. Catal. B Environ. 166-167 (2015) 104-111. https://doi.org/10.1016/j.apcatb.2014.10.049
  6. H. Kato, A. Kudo, Catal. Lett. 58 (1999) 153-155. https://doi.org/10.1023/A:1019082001809
  7. L.J. An, H. Onishi, ACS Catal. 5 (2015) 3196-3206. https://doi.org/10.1021/acscatal.5b00484
  8. X.Y. Wu, S. Yin, B. Liu, M. Kobayashi, M. Kakihana, T. Sato, J. Mater. Chem. A 2 (2014) 20832-20840. https://doi.org/10.1039/C4TA04132A
  9. B.C. Wang, P.D. Kanhere, Z. Chen, J. Nisar, B. Pathak, R. Ahuja, J. Phys. Chem. C 117 (2013) 22518-22524. https://doi.org/10.1021/jp407025r
  10. Y.G. Su, S.W. Wang, Y. Meng, H. Han, X.J. Wang, RSC Adv. 2 (2012) 12932-12939. https://doi.org/10.1039/c2ra21241b
  11. X. Zhou, J.Y. Shi, C. Li, J. Phys. Chem. C 115 (2011) 8305-8311. https://doi.org/10.1021/jp200022x
  12. J. He, X.M. Lu, W.L. Zhu, Y.Y. Hou, R.X. Ti, F.Z. Huang, X.L. Lu, T.T. Xu, J. Su, J.S. Zhu, Appl. Phys. Lett. 107 (2015) 012409. https://doi.org/10.1063/1.4926613
  13. L.H. Yang, H.M. Qiu, L.Q. Pan, Z.G. Guo, M. Xu, J.H. Yin, X.D. Zhao, J. Magn. Magn Mater. 350 (2014) 1-5. https://doi.org/10.1016/j.jmmm.2013.09.036
  14. E.V. Ramana, S.M. Yang, R. Jung, M.H. Jung, B.W. Lee, C.U. Jung, J. Appl. Phys. 113 (2013) 187219. https://doi.org/10.1063/1.4801965
  15. H.S. Kim, L. Bi, G.F. Dionne, C.A. Ross, Appl. Phys. Lett. 93 (2008) 092506. https://doi.org/10.1063/1.2977963
  16. H. Nakayama, H. Katayama-Yoshida, Jpn. J. Appl. Phys. 40 (2001) L1355-L1358. https://doi.org/10.1143/JJAP.40.L1355
  17. S. Ray, Y.V. Kolen'ko, K.A. Kovnir, O.I. Lebedev, S. Turner, T. Chakraborty, R. Erni, T. Watanabe, G.V. Tendeloo, M. Yoshimura, M. Itoh, Nanotechnology 23 (2012) 025702. https://doi.org/10.1088/0957-4484/23/2/025702
  18. R.J. Green, T.Z. Regier, B. Leedahl, J.A. McLeod, X.H. Xu, G.S. Chang, E.Z. Kurmaev, A. Moewes, Phys. Rev. Lett. 115 (2015) 167401. https://doi.org/10.1103/PhysRevLett.115.167401
  19. F.X. Jiang, D. Chen, G.W. Zhou, Y.N. Wang, X.H. Xu, Sci. Rep. 8 (2018) 2417. https://doi.org/10.1038/s41598-018-20751-0
  20. Z.Y. Quan, X. Liu, Y. Qi, Z.L. Song, S.F. Qi, G.W. Zhou, X.H. Xu, Appl. Surf. Sci. 399 (2017) 751-757. https://doi.org/10.1016/j.apsusc.2016.12.143
  21. J.C. Yu, J.G. Yu, W.K. Ho, Z.T. Jiang, L.Z. Zhang, Chem. Mater. 14 (2002) 3808-3816. https://doi.org/10.1021/cm020027c
  22. A. Sobhani, M. Salavati-Niasari, J. Alloys Compd. 625 (2015) 26-33. https://doi.org/10.1016/j.jallcom.2014.11.079
  23. O. Amiri, M. Salavati-Niasari, N. Mir, F. Beshkar, M. Saadat, F. Ansari, Renew. Energy 125 (2018) 590-598. https://doi.org/10.1016/j.renene.2018.03.003
  24. D.A. Schwartz, D.R. Gamelin, Adv. Mater. 16 (2004) 2115-2119. https://doi.org/10.1002/adma.200400456
  25. T.Z. Tong, J.L. Zhang, B.Z. Tian, F. Chen, D.N. He, J. Hazard Mater. 155 (2008) 572-579. https://doi.org/10.1016/j.jhazmat.2007.11.106

Cited by

  1. Facile hydrothermal synthesis of NaTaO 3 with high photocatalytic activity vol.33, pp.14, 2018, https://doi.org/10.1142/s0217984919400463