DOI QR코드

DOI QR Code

Optimization red emission of SrMoO4: Eu3+ via hydro-thermal co-precipitation synthesis using orthogonal experiment

  • Tan, Yongjun (School of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University) ;
  • Luo, Xuedan (School of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University) ;
  • Mao, Mingfu (Zhejiang Qianhe Biotech Lnc.) ;
  • Shu, Dehua (China Geo Engineering Corporation) ;
  • Shan, Wenfei (School of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University) ;
  • Li, Guizhi (School of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University) ;
  • Guo, Dongcai (School of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University)
  • 투고 : 2018.05.16
  • 심사 : 2018.08.08
  • 발행 : 2018.11.30

초록

In the present study, the $SrMoO_4:Eu^{3+}$ phosphors has been synthesized through hydro-thermal co-precipitation method, and single factor and orthogonal experiment method was adopted to find optimal synthesis condition. It is interesting to note that hydro-thermal temperature is a prominent effect on the luminescent intensity of $SrMoO_4:Eu^{3+}$ red phosphor, followed by co-precipitation temperature, calcining time, and the doping amount of $Eu^{3+}$. The optimal synthesis conditions were obtained: hydro-thermal temperature is $145^{\circ}C$, co-precipitation temperature is $35^{\circ}C$, the calcining time is 2.5 h, and the doping amount of activator $Eu^{3+}$ is 25%. Subsequently, the crystalline particle size, phase composition and morphology of the synthesized phosphors were evaluated by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The results show that these phosphors possess a scheelite-type tetragonal structure, and the particle size is about $0.2{\mu}m$. Spectroscopic investigations of the synthesized phosphors are carried out with the help of photo-luminescence excitation and emission analysis. The studies reveal that $SrMoO_4:Eu^{3+}$ phosphor efficiently convert radiation of 394 nm-592 and 616 nm for red light, and the luminescence intensity of $SrMoO_4:Eu^{3+}$ phosphors is improved. $SrMoO_4:Eu^{3+}$ phosphors may be a potential application for enhancing the efficiency of white LEDs.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China, Natural Science Foundation of Hunan Province, Hunan Provincial Science and Technology Department, Changsha Science and Technology Bureau, Hunan University

참고문헌

  1. A. Escudero, C. Carrillo-Carrión, M.V. Zyuzin, W.J. Parak, Luminescent rare-earthbased nanoparticles: a summarized overview of their synthesis, functionalization, and applications, Top. Curr. Chem. 374 (2016), https://doi.org/10.1007/s41061-016-0049-8.
  2. Y.C. Lin, M. Karlsson, M. Bettinelli, Inorganic phosphor materials for lighting, Top. Curr. Chem. 374 (2016) 374-421, https://doi.org/10.1007/s41061-016-0023-5.
  3. C. Litterscheid, S. Kruger, M. Euler, A. Dreizler, C. Wickleder, B. Albert, Solid solution between lithium-rich yttrium and europium molybdate as new efficient redemitting phosphors, J. Mater. Chem. C. 4 (2016) 596-602, https://doi.org/10.1039/C5TC02515J.
  4. A. Khanna, P.S. Dutta, Tunable color temperature solid state white light source using flux grown phosphor crystals of $Eu^{3+}$, $Dy^{3+}$ and $Tb^{3+}$ activated calcium sodium molybdenum oxide, Opt. Mater. (Amst). 37 (2014) 646-655, https://doi.org/10.1016/j.optmat.2014.08.009.
  5. B.M. van der Ende, L. Aarts, A. Meijerink, Lanthanide ions as spectral converters for solar cells, Phys. Chem. Chem. Phys. 11 (2009) 11081, https://doi.org/10.1039/b913877c.
  6. J. Li, J. Yan, D. Wen, W.U. Khan, J. Shi, M. Wu, Q. Su, P.A. Tanner, Advanced red phosphors for white light-emitting diodes, J. Mater. Chem. C. 4 (2016) 8611-8623, https://doi.org/10.1039/C6TC02695H.
  7. D. Spassky, S. Ivanov, I. Kitaeva, V. Kolobanov, V. Mikhailin, L. Ivleva, I. Voronina, Optical and luminescent properties of a series of molybdate single crystals of scheelite crystal structure, Phys. Status Solidi C Conf. 2 (2005) 65-68, https://doi. org/10.1002/pssc.200460112.
  8. X. Liu, L. Li, H.M. Noh, S.H. Park, J.H. Jeong, H.K. Yang, K. Jang, D.S. Shin, Synthesis and photoluminescence of novel 3D flower-like $CaMoO_4$ architectures hierarchically self-assembled with tetragonal bipyramid nanocrystals, Opt. Mater. (Amst). 43 (2015) 10-17, https://doi.org/10.1016/j.optmat.2015.02.014.
  9. L.Y. Zhang, W.W. Fu, G.H. Zheng, Z.X. Dai, Y.N. Zhu, J.J. Mu, Morphology and luminescent properties of $SrMoO_4:Eu^{3+}$, $Dy^{3+}$, J. Mater. Sci. Mater. Electron. 27 (2016) 5164-5174, https://doi.org/10.1007/s10854-016-4409-5.
  10. S.K. Gupta, M. Sahu, P.S. Ghosh, D. Tyagi, M.K. Saxena, R.M. Kadam, Energy transfer dynamics and luminescence properties of $Eu^{3+}$ in $CaMoO_4$ and $SrMoO_4$, Dalton Trans. 44 (2015) 18957-18969, https://doi.org/10.1039/C5DT03280F.
  11. C. Guo, J. Xu, S. Wang, L. Li, Y. Zhang, X. Li, Facile synthesis and photocatalytic application of hierarchical mesoporous $Bi_2MoO_6$ nanosheet-based microspheres, CrystEngComm 14 (2012) 3602, https://doi.org/10.1039/c2ce06757a.
  12. W. Bi, Q. Meng, W. Sun, Luminescent properties and energy transfer mechanism of $NaGd(MoO_4)_2:Sm^{3+}$, $Eu^{3+}$ phosphors, Ceram. Int. 42 (2016) 14086-14093, https://doi.org/10.1016/j.ceramint.2016.06.017.
  13. M. Bazarganipour, Synthesis and characterization of $BaMoO_4$ nanostructures prepared via a simple sonochemical method and their degradation ability of methylene blue, Ceram. Int. 42 (2016) 12617-12622, https://doi.org/10.1016/j.ceramint.2016.04.151.
  14. X. Qiao, T. Tsuboi, Emission from Mo-O charge-transfer state and $Yb^{3+}$ emission in $Eu^{3+}$-doped and nondoped molybdates under UV excitation, J. Am. Ceram. Soc. 100 (2017) 1440-1451, https://doi.org/10.1111/jace.14679.
  15. S. Cho, Photoluminescence properties of $BaMoO_4:RE^{3+}$ (RE = Eu, Sm, Dy, Tb, Tm) phosphors, J. Kor. Phys. Soc. 69 (2016) 1479-1484, https://doi.org/10.3938/jkps.69.1479.
  16. C. Shivakumara, R. Saraf, $Eu^{3+}$-activated $SrMoO_4$ phosphors for white LEDs applications: synthesis and structural characterization, Opt. Mater. (Amst). 42 (2015) 178-186, https://doi.org/10.1016/j.optmat.2015.01.006.
  17. W. Lu, L. Cheng, H. Zhong, J. Sun, J. Wan, Y. Tian, B. Chen, Dependence of upconversion emission intensity on $Yb^{3+}$ concentration in $Er^{3+}$/$Yb^{3+}$ co-doped flake shaped $Y_2(MoO_4)_3$ phosphors, J. Phys. D Appl. Phys. 43 (2010), https://doi.org/10.1088/0022-3727/43/8/085404.
  18. S. Dutta, S. Som, A.K. Kunti, V. Kumar, S.K. Sharma, H.C. Swart, H.G. Visser, Structural and luminescence responses of $CaMoO_4$ nano phosphors synthesized by hydrothermal route to swift heavy ion irradiation: elemental and spectral stability, Acta Mater. 124 (2017) 109-119, https://doi.org/10.1016/j.actamat.2016.11.002.
  19. Q. Xiao, L. Xiao, Y. Liu, X. Chen, Y. Li, Synthesis and luminescence properties of needle-like $SrAl_2O_4:Eu$, Dy phosphor via a hydrothermal co-precipitation method, J. Phys. Chem. Solid. 71 (2010) 1026-1030, https://doi.org/10.1016/j.jpcs.2010.04.017.
  20. Y.T. Yin, Q.H. Chen, T.T. Yan, Q.H. Chen, Synthesis of silica modified large-sized hydroxyapatite whiskers by a hydrothermal Co-Precipitation method, Key Eng. Mater. 645-646 (2015) 1339-1344, https://doi.org/10.4028/www.scientific.net/KEM.645-646.1339.
  21. J. Zhu, D.A.S. Chew, S. Lv, W. Wu, Optimization method for building envelope design to minimize carbon emissions of building operational energy consumption using orthogonal experimental design (OED), Habitat Int. 37 (2013) 148-154, https://doi.org/10.1016/j.habitatint.2011.12.006.
  22. L. Su, J. Zhang, C. Wang, Y. Zhang, Z. Li, Y. Song, T. Jin, Z. Ma, Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments, Appl. Energy 163 (2016) 201-210, https://doi.org/10.1016/j.apenergy.2015.11.014.

피인용 문헌

  1. Preparation and characterization of polymethyl methacrylate light-scattering material vol.77, pp.6, 2018, https://doi.org/10.1007/s00289-019-02909-6
  2. Effect of Introduction of Lu on Thermal Stability and Luminescence Properties of YAG:Ce3+,Sm3+ Using Orthogonal Experiments vol.80, pp.1, 2021, https://doi.org/10.1080/0371750x.2020.1857308
  3. Optimum preparation of low-resistivity indium tin oxide nanopowders via polyacrylamide gel route using orthogonal experiment vol.32, pp.17, 2021, https://doi.org/10.1007/s10854-021-06707-7
  4. Optimization Preparation of Indium Tin Oxide Nanoparticles via Microemulsion Method Using Orthogonal Experiment vol.11, pp.11, 2018, https://doi.org/10.3390/cryst11111387