DOI QR코드

DOI QR Code

Site spectroscopy probing of Eu3+ incorporated into novel LiYxSryZrO3+α host matrix

  • Ahemen, I. (Department of Physics, University of the Free State) ;
  • Dejene, F.B. (Department of Physics, University of the Free State)
  • Received : 2018.05.27
  • Accepted : 2018.07.26
  • Published : 2018.11.30

Abstract

In this work, we investigated the spectroscopic properties of $LiY_xSr_yZrO_{3+{\alpha}:Eu^{3+}$, a red emitting nanophosphor based on $SrZrO_3$ perovskite. The synthesis process was an auto-combustion process. X-ray diffractograms show the orthorhombic structure of $SrZrO_3$. Photoluminescence (PL) excitation spectra display a split charge transfer band revealing the presence of two possible sites for the $Eu^{3+}$ ions. The emission spectra at 231 nm excitation illustrate the dominance of the $^5D_0-^7F_1$ transition, which is an indication that the smaller sized $Eu^{3+}$ ions are mostly situated at the more ordered (symmetric) $Sr^{2+}$ sites. The emission spectra at 292 nm & 397 nm excitations show the dominance of $^5D_0-^7F_2$ transition which suggests some of the $Eu^{3+}$ ions are also situated at the distorted $Zr^{4+}$ sites. Both the intensity parameters, asymmetry ratio and the decay lifetimes of the nanophosphors show dependence on $Y^{3+}$ concentration, signifying a modification in the host structure. Maximum quantum efficiency value of ${\approx}46%$ was obtained for the nanophosphors which indicate the need for improvement for practical applications. CIE coordinates show the suitability of this phosphor for both red emission in LED and as a complementary colour for white LED applications.

Keywords

References

  1. A. Zhang, M. Lü, S. Wang, G. Zhou, S. Wang, Y. Zhou, Novel photoluminescence of SrZrO3nanocrystals synthesized through a facile combustion method, J. Alloys Compd. 433 (2007) 7-11, https://doi.org/10.1016/j.jallcom.2006.06.083.
  2. Sheetal, V.B. Taxak, R. Arora, Dayawati, S.P. Khatkar, Synthesis, structural and optical properties of SrZrO3:Eu3+phosphor, J. Rare Earths 32 (2014) 293-297, https://doi.org/10.1016/S1002-0721(14)60070-3.
  3. D.-H. Kim, Y.-S. Lee, Formation of the mid-gap state in SrZrO3 nanocrystals by Euion doping and its possible relation to the visible emission, J. Kor. Phys. Soc. 61 (2012) 785-790, https://doi.org/10.3938/jkps.61.785.
  4. V.M. Longo, L.S. Cavalcante, R. Erlo, V.R. Mastelaro, A.T. de Figueiredo, J.R. Sambrano, et al., Strong violet-blue light photoluminescence emission at room temperature in SrZrO3: joint experimental and theoretical study, Acta Mater. 56 (2008) 2191-2202, https://doi.org/10.1016/j.actamat.2007.12.059.
  5. T. Osaka, C. Numako, K. Koto, Local structure and thermal study of ytterbiumdoped SrZrO3, Mater. Res. Bull. 34 (1999) 11-24, https://doi.org/10.1016/S0025-5408(98)00209-8.
  6. Y. Okuyama, K. Isa, Y.S. Lee, T. Sakai, H. Matsumoto, Incorporation and conduction of proton in SrCe0.9 - XZrxY0.1O3 - ${\delta}$, Solid State Ionics 275 (2015) 35-38, https://doi.org/10.1016/j.ssi.2015.01.010.
  7. N. Suriyayothin, N.G. Eror, Solubility limit of La in SrZrO3, J. Mater. Sci. 19 (1984) 2775-2780, https://doi.org/10.1007/BF01026953.
  8. T. Schober, Water vapor solubility and impedance of the high temperature proton conductor SrZr0.9Y0.1O2.95, Solid State Ionics 145 (2001) 319-324, https://doi. org/10.1016/S0167-2738(01)00926-2.
  9. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, et al., Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3, Science (80-. ) 342 (2013) 344-347, https://doi.org/10.1126/science.1243167.
  10. I. Ahemen, F.B. Dejene, R.E. Kroon, H.C. Swart, Effect of europium ion concentration on the structural and photoluminescence properties of novel Li 2 BaZrO 4: Eu 3+ nanocrystals, Opt. Mater. (Amst). 74 (2017) 58-66, https://doi.org/10. 1016/j.optmat.2017.03.029. https://doi.org/10.1016/j.optmat.2017.03.029
  11. I. Ahemen, O. Meludu, F.B. Dejene, B. Viana, Site spectroscopy of Eu3+ doped- ZnS nanocrystals embedded in sodium carboxymethyl cellulose matrix, Opt. Mater. (Amst). 61 (2016) 82-91, https://doi.org/10.1016/j.optmat.2016.07.036.
  12. R. Shukla, S.K. Gupta, V. Grover, V. Natarajan, A.K. Tyagi, The role of reaction conditions in the polymorphic control of $Eu^{3+}$ doped $YInO_3$: structure and size sensitive luminescence, Dalton Trans. 44 (2015) 10628-10635, https://doi.org/10.1039/C4DT02717E.
  13. S.K. Gupta, B. Atomic, N. Pathak, Atomic, an efficient Gel-combustion synthesis of visible light emitting barium zirconate perovskite nanoceramics: probing the photoluminescence of Sm3 + and Eu3 + doped, J. Lumin. 169 (2015) 106-114, https://doi.org/10.1016/j.jlumin.2015.08.032.
  14. N. Pathak, S.K. Gupta, P.S. Ghosh, A. Arya, V. Natarajan, R.M. Kadam, Probing local site environments and distribution of manganese in $SrZrO_3$:Mn; PL and EPR spectroscopy complimented by DFT calculations, RSC Adv. 5 (2015) 17501-17513, https://doi.org/10.1039/C4RA15141K.
  15. S.K. Gupta, P.S. Ghosh, A.K. Yadav, N. Pathak, A. Arya, S.N. Jha, et al., Luminescence properties of $SrZrO_3$/$Tb^{3+}$ perovskite: host-dopant energy-transfer dynamics and local structure of $Tb^{3+}$, Inorg. Chem. 55 (2016) 1728-1740, https://doi.org/10.1021/acs.inorgchem.5b02639.
  16. A. Manikandan, N.C.S. Selvam, L.J. Kennedy, R.T. Kumar, J.J. Vijaya, Structural and optical properties of novel ZrO2nanostructures by microwave and solution combustion method, J. Nanosci. Nanotechnol. 13 (2013) 2595-2603, https://doi.org/10.1166/jnn.2013.7357.
  17. P. Kubelka, New contributions to the optics of intensely light-scattering materials. part I, J. Opt. Soc. Am. 38 (1948) 448-457, https://doi.org/10.1364/JOSA.38. 000448.
  18. S. Som, S.K. Sharma, Eu 3 +/Tb3 + -codoped Y2O3 Nanophosphors: Rietveld Refinement , Bandgap and Photoluminescence Optimization, 415102 (n.d.). doi:10.1088/0022-3727/45/41/415102.
  19. L.S. Cavalcante, A.Z. Simões, J.C. Sczancoski, V.M. Longo, R. Erlo, M.T. Escote, et al., SrZrO3powders obtained by chemical method: synthesis, characterization and optical absorption behaviour, Solid State Sci. 9 (2007) 1020-1027, https://doi. org/10.1016/j.solidstatesciences.2007.07.019.
  20. S. Das, S. Som, C.Y. Yang, S. Chavhan, C.H. Lu, Structural evaluations and temperature dependent photoluminescence characterizations of Eu 3+ -activated SrZrO 3 hollow spheres for luminescence thermometry applications, Sci. Rep. 6 (2016) 1-13, https://doi.org/10.1038/srep25787.
  21. J. Huang, L. Zhou, Z. Wang, Y. Lan, Z. Tong, F. Gong, et al., Photoluminescence Properties of SrZrO 3: Eu 3 + and BaZrO 3: Eu 3 + Phosphors with Perovskite Structure vol. 487, (2009), pp. 10-12, https://doi.org/10.1016/j.jallcom.2009.07. 153.
  22. K. Munirathnam, G.R. Dillip, B.D.P. Raju, S.W. Joo, S.J. Dhoble, B.M. Nagabhushana, et al., Synthesis , photoluminescence and Judd - Ofelt parameters of LiNa3P2O7: Eu3 + orthorhombic microstructures, Appl. Phys. A. 120 (2015) 1615-1623, https://doi.org/10.1007/s00339-015-9371-1.
  23. R. Saraf, C.S.N. Dhananjaya, Photoluminescence properties of Eu 3 + -activated CaMoO 4 phosphors for WLEDs applications and its Judd - Ofelt analysis, J. Mater. Sci. 50 (2015) 287-298, https://doi.org/10.1007/s10853-014-8587-3.
  24. S.K. Gupta, M. Mohapatra, V. Natarajan, S.V. Godbole, Site-specific luminescence of Eu3+in gel-combustion-derived strontium zirconate perovskite nanophosphors, J. Mater. Sci. 47 (2012) 3504-3515, https://doi.org/10.1007/s10853-011-6195-z.
  25. Y.S. Vidya, K.S. Anantharaju, H. Nagabhushana, S.C. Sharma, H.P. Nagaswarupa, S.C. Prashantha, et al., Combustion synthesized tetragonal ZrO2: Eu3+ nanophosphors: structural and photoluminescence studies, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 135 (2015) 241-251, https://doi.org/10.1016/j.saa.2014.06. 151.
  26. X. Zhang, L. Zhou, Q. Pang, M. Gong, Synthesis, photoluminescence and Judd-Ofelt analysis of red $LiGd_5P_2O_{13}:Eu^{3+}$ phosphors for white LEDs, RSC Adv. 5 (2015) 54622-54628, https://doi.org/10.1039/C5RA06680H.
  27. S.K. Gupta, V. Natarajan, Synthesis, Characterization and Photoluminescence Spectroscopy of Lanthanide Ion Doped Oxide Materials, BARC Newslatter, 2015, pp. 14-21.
  28. V.A. Online, I.E. Kolesnikov, A.V. Povolotskiy, D.V. Mamonova, A.A. Manshina, M.D. Mikhailov, RSC Advances Yttrium Oxide Nanoparticles: Defect Vs . Normal Sites, (2016), pp. 76533-76541, https://doi.org/10.1039/C6RA16814K.
  29. J.C. Batista, P.C. de Sousa Filho, O.A. Serra, Effect of the vanadium(v) concentration on the spectroscopic properties of nanosized europium-doped yttrium phosphates, Dalton Trans. 41 (2012) 6310, https://doi.org/10.1039/c2dt30380a.
  30. V. Dimitrov, S. Sakka, Linear and nonlinear optical properties of simple oxides. II, J. Appl. Phys. 79 (1996) 1741, https://doi.org/10.1063/1.360963.
  31. K. Binnemans, C. Gorller-Walrand, Application of Eu3+ ion for site symmetry determination, J. Rare Earths 14 (1996) 173-180.
  32. K. Binnemans, Interpretation of europium(III) spectra, Coord. Chem. Rev. 295 (2015) 1-45, https://doi.org/10.1016/j.ccr.2015.02.015.
  33. M. Ferhi, C. Bouzidi, K. Horchani-Naifer, H. Elhouichet, M. Ferid, Judd-Ofelt analysis of spectroscopic properties of Eu3+ doped KLa(PO3)4, J. Lumin. 157 (2015) 21-27, https://doi.org/10.1016/j.jlumin.2014.08.017.
  34. S. Gopi, S.K. Jose, A. George, N.V. Unnikrishnan, C. Joseph, P.R. Biju, Luminescence and phonon sideband analysis of Eu3+doped alkali fluoroborate glasses for red emission applications, J. Mater. Sci. Mater. Electron. 29 (2018) 674-682, https://doi.org/10.1007/s10854-017-7961-8.
  35. Z. Gao, N. Xue, J.H. Jeong, R. Yu, Spectroscopic properties of a novel garnet-type tellurate orange-red emitting Li3Gd3Te2O12:Sm3+ phosphor, J. Mater. Sci. Mater. Electron. 28 (2017) 12640-12645, https://doi.org/10.1007/s10854-017-7088-y.

Cited by

  1. Structural and optical characteristics of dysprosium-doped zinc zirconate nanocomposites vol.3, pp.9, 2018, https://doi.org/10.1364/osac.393520