DOI QR코드

DOI QR Code

Coil-to-globule transition of thermo-responsive γ-substituted poly (ɛ-caprolactone) in water: A molecular dynamics simulation study

  • Koochaki, Amin (Smart Polymers and Nanocomposites Research Group, School of Chemical Engineering, Iran University of Science and Technology) ;
  • Moghbeli, Mohammad Reza (Smart Polymers and Nanocomposites Research Group, School of Chemical Engineering, Iran University of Science and Technology) ;
  • Nikkhah, Sousa Javan (Smart Polymers and Nanocomposites Research Group, School of Chemical Engineering, Iran University of Science and Technology)
  • 투고 : 2018.04.10
  • 심사 : 2018.07.12
  • 발행 : 2018.11.30

초록

The coil-to-globule behavior of poly{${\gamma}$-2-[2-(2methoxyethoxy)ethoxy]ethoxy-3-caprolactone} (PMEEECL) as a ${\gamma}$-substituted poly (${\varepsilon}$-caprolactone) was investigated via atomistic molecular dynamics (MD) simulation. For this purpose, radius of gyration, end-to-end distance and radial distribution function of the chain in the presence of water were calculated. Consequently, the lower critical solution temperature (LCST) of PMEEECL chain at which the coil-to-globule transition takes place, was determined in each calculated parameter curve. The simulation results indicated that the LCST of PMEEECL was occurred at close to 320 K, which is in a good agreement with previous experimental results. Additionally, the appearance of sudden change in both Flory-Huggins interaction parameter (${\chi}$) and interaction energy between the PMEEECL chain and water molecules at about 320 K confirmed the calculated LCST result. The radial distribution function (RDF) results showed that the affinity of the PMEEECL side chain to water molecules is lower than its backbone.

키워드

참고문헌

  1. M.R. Islam, Y. Gao, X. Li, M.J. Serpe, Responsive polymers for biosensing and protein delivery, J. Mater. Chem. B 2 (2014) 2444-2451.
  2. K. Shimizu, H. Fujita, E. Nagamori, Oxygen plasma‐treated thermoresponsive polymer surfaces for cell sheet engineering, Biotechnol. Bioeng. 106 (2010) 303-310.
  3. N.A. Jalili, M. Muscarello, A.K. Gaharwar, Nanoengineered thermoresponsive magnetic hydrogels for biomedical applications, Bioeng. Transl. Med. 1 (2016) 297-305. https://doi.org/10.1002/btm2.10034
  4. S.R. Abulateefeh, S.G. Spain, J.W. Aylott, W.C. Chan, M.C. Garnett, C. Alexander, Thermoresponsive polymer colloids for drug delivery and cancer therapy, Macromol. Biosci. 11 (2011) 1722-1734. https://doi.org/10.1002/mabi.201100252
  5. A. Gandhi, A. Paul, S.O. Sen, K.K. Sen, Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications, Asian J. Pharm. Sci. 10 (2015) 99-107. https://doi.org/10.1016/j.ajps.2014.08.010
  6. E. Autieri, E. Chiessi, A. Lonardi, G. Paradossi, M. Sega, Conformation and dynamics of poly(N-isopropyl acrylamide) trimers in water: a molecular dynamics and metadynamics simulation study, J. Phys. Chem. B 115 (2011) 5827-5839. https://doi.org/10.1021/jp2020929
  7. J. Chen, M. Liu, H. Gong, Y. Huang, C. Chen, Synthesis and self-assembly of thermoresponsive PEG-b-PNIPAM-b-PCL ABC triblock copolymer through the combination of atom transfer radical polymerization, ring-opening polymerization, and click chemistry, J. Phys. Chem. B 115 (2011) 14947-14955. https://doi.org/10.1021/jp208494w
  8. Y. Cheng, J. Hao, L.A. Lee, M.C. Biewer, Q. Wang, M.C. Stefan, Thermally controlled release of anticancer drug from self-assembled ${\gamma}$-substituted amphiphilic poly(${\varepsilon}$- caprolactone) micellar nanoparticles, Biomacromolecules 13 (2012) 2163-2173. https://doi.org/10.1021/bm300823y
  9. M. Gou, X. Zheng, K. Men, J. Zhang, L. Zheng, X. Wang, F. Luo, Y. Zhao, X. Zhao, Y. Wei, Z. Qian, Poly(${\varepsilon}$-caprolactone)/Poly(ethylene glycol)/Poly(${\varepsilon}$-caprolactone) nanoparticles: preparation, characterization, and application in doxorubicin delivery, J. Phys. Chem. B 113 (2009) 12928-12933. https://doi.org/10.1021/jp905781g
  10. J. Hao, J. Servello, P. Sista, M.C. Biewer, M.C. Stefan, Temperature-sensitive aliphatic polyesters: synthesis and characterization of ${\gamma}$-substituted caprolactone monomers and polymers, J. Mater. Chem. 21 (2011) 10623-10628. https://doi.org/10.1039/c1jm11288k
  11. E.A. Rainbolt, K.E. Washington, M.C. Biewer, M.C. Stefan, Towards smart polymeric drug carriers: self-assembling ${\gamma}$-substituted polycaprolactones with highly tunable thermoresponsive behavior, J. Mater. Chem. B 1 (2013) 6532-6537. https://doi.org/10.1039/c3tb21488e
  12. J. Hao, Y. Cheng, R.J.K. Ranatunga, S. Senevirathne, M.C. Biewer, S.O. Nielsen, Q. Wang, M.C. Stefan, A combined experimental and computational study of the substituent effect on micellar behavior of ${\gamma}$-substituted thermoresponsive amphiphilic poly(${\varepsilon}$-caprolactone)s, Macromolecules 46 (2013) 4829-4838. https://doi.org/10.1021/ma400855z
  13. M. Alaghemandi, E. Spohr, Molecular dynamics investigation of the thermo-responsive polymer poly(N-isopropylacrylamide), Macromol. Theory Simul. 21 (2012) 106-112. https://doi.org/10.1002/mats.201100071
  14. Z. Luo, J. Jiang, pH-sensitive drug loading/releasing in amphiphilic copolymer PAE-PEG: integrating molecular dynamics and dissipative particle dynamics simulations, J. Contr. Release 162 (2012) 185-193. https://doi.org/10.1016/j.jconrel.2012.06.027
  15. L.J. Abbott, A.K. Tucker, M.J. Stevens, Single chain structure of a poly(N-isopropylacrylamide) surfactant in water, J. Phys. Chem. B 119 (2015) 3837-3845. https://doi.org/10.1021/jp511398q
  16. T.E. De Oliveira, D. Mukherji, K. Kremer, P.A. Netz, Effects of stereochemistry and copolymerization on the LCST of PNIPAm, J. Chem. Phys. 146 (2017) 034904. https://doi.org/10.1063/1.4974165
  17. A.K. Tucker, M.J. Stevens, Study of the polymer length dependence of the single chain transition temperature in syndiotactic poly(N-isopropylacrylamide) oligomers in water, Macromolecules 45 (2012) 6697-6703. https://doi.org/10.1021/ma300729z
  18. B. Zhao, N.K. Li, Y.G. Yingling, C.K. Hall, LCST behavior is manifested in a single molecule: elastin-like polypeptide (VPGVG)n, Biomacromolecules 17 (2016) 111-118. https://doi.org/10.1021/acs.biomac.5b01235
  19. S.A. Deshmukh, Z. Li, G. Kamath, K.J. Suthar, S.K.R.S. Sankaranarayanan, D.C. Mancini, Atomistic insights into solvation dynamics and conformational transformation in thermo-sensitive and non-thermo-sensitive oligomers, Polymer (United Kingdom) 54 (2013) 210-222.
  20. G. Paradossi, E. Chiessi, Solution behaviour of poly(N-isopropylacrylamide) stereoisomers in water: a molecular dynamics simulation study, Phys. Chem. Chem. Phys. 19 (2017) 11892-11903. https://doi.org/10.1039/C7CP00808B
  21. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1-19. https://doi.org/10.1006/jcph.1995.1039
  22. W.L. Jorgensen, J. Tirado-Rives, The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin, J. Am. Chem. Soc. 110 (1988) 1657-1666. https://doi.org/10.1021/ja00214a001
  23. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79 (1983) 926-936. https://doi.org/10.1063/1.445869
  24. R.W. Hockney, J.W. Eastwood, Computer simulation using particles, SIAM Rev. 25 (1983) 425-426. https://doi.org/10.1137/1025102
  25. Z.C. Yan, D. Vlassopoulos, Chain dimensions and dynamic dilution in branched polymers, Polymer 96 (2016) 35-44. https://doi.org/10.1016/j.polymer.2016.04.058
  26. S. Javan Nikkhah, M.R. Moghbeli, S.M. Hashemianzadeh, A molecular simulation study on the adhesion behavior of a functionalized polyethylene-functionalized graphene interface, Phys. Chem. Chem. Phys. 17 (2015) 27414-27427. https://doi.org/10.1039/C5CP04699H
  27. W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14 (1996) 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
  28. T. Ni, G.H.P. Gao, Y. Xu, M. Yang, Dissipative particle dynamics simulation on the association properties of fluorocarbon-modified polyacrylamide copolymers, Polym. J. 43 (2011) 635-641. https://doi.org/10.1038/pj.2011.24
  29. S.S. Jawalkar, V.S.N. Kothapalli, S.B. Halligudi, M. Sairam, T.M. Aminabhavi, Molecular modeling simulations to predict compatibility of poly(vinyl alcohol) and chitosan blends: a comparison with experiments, J. Phys. Chem. B 111 (2007) 2431-2439. https://doi.org/10.1021/jp0668495

피인용 문헌

  1. Dual responsive PMEEECL-PAE block copolymers: a computational self-assembly and doxorubicin uptake study vol.10, pp.6, 2020, https://doi.org/10.1039/c9ra09066e
  2. Factors Responsible for the Aggregation of Poly(vinyl alcohol) in Aqueous Solution as Revealed by Molecular Dynamics Simulations vol.59, pp.37, 2018, https://doi.org/10.1021/acs.iecr.0c02467
  3. Cumulative Submillisecond All-Atom Simulations of the Temperature-Induced Coil-to-Globule Transition of Poly(N-vinylcaprolactam) in Aqueous Solution vol.53, pp.22, 2018, https://doi.org/10.1021/acs.macromol.0c01896
  4. Comparison of the effect of poly(N-vinyl caprolactam) and poly(N-isopropyl acrylamide) trimers on the stability of hydrated Na-montmorillonite: A molecular dynamics study vol.29, pp.6, 2018, https://doi.org/10.1177/0967391120935249