DOI QR코드

DOI QR Code

Synthesis and characterization of doxorubicin hydrochloride drug molecule-intercalated DNA nanostructures

  • Gnapareddy, Bramaramba (Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University) ;
  • Deore, Pragati Madhukar (Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University) ;
  • Dugasani, Sreekantha Reddy (Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University) ;
  • Kim, Seungjae (Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University) ;
  • Park, Sung Ha (Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University)
  • Received : 2018.03.18
  • Accepted : 2018.07.11
  • Published : 2018.11.30

Abstract

In this paper, we demonstrate the feasibility of constructing DNA nanostructures (i.e. DNA rings and double-crossover (DX) DNA lattices) with appropriate doxorubicin hydrochloride (DOX) concentration and reveal significant characteristics for specific applications, especially in the fields of biophysics, biochemistry and medicine. DOX-intercalated DNA rings and DX DNA lattices are fabricated on a given substrate using the substrateassisted growth method. For both DNA rings and DX DNA lattices, phase transitions from crystalline to amorphous, observed using atomic force microscopy (AFM) occurred above a certain concentration of DOX (at a critical concentration of DOX, $30{\mu}M$ of $[DOX]_C$) at a fixed DNA concentration. Additionally, the coverage percentage of DNA nanostructures on a given substrate is discussed in order to understand the crystal growth mechanism during the course of annealing. Lastly, we address the significance of optical absorption and photoluminescence characteristics for determining the appropriate DOX binding to DNA molecules and the energy transfer between DOX and DNA, respectively. Both measurements provide evidence of DOX doping and $[DOX]_C$ in DNA nanostructures.

Keywords

Acknowledgement

Supported by : National Research Foundation (NRF)

References

  1. E. Winfree, F. Liu, L.A. Wenzler, N.C. Seeman, Nature 394 (1998) 539-544. https://doi.org/10.1038/28998
  2. P. Yin, R.F. Hariadi, S. Sahu, H.M. Choi, S.H. Park, T.H. Labean, J.H. Reif, Science 321 (2008) 824-826. https://doi.org/10.1126/science.1157312
  3. Y. He, T. Ye, M. Su, C. Zhang, A.E. Ribbe, W. Jiang, C. Mao, Nature 452 (2008) 198-201. https://doi.org/10.1038/nature06597
  4. P.W.K. Rothermund, Nature 440 (2006) 297-302. https://doi.org/10.1038/nature04586
  5. S.R. Dugasani, N. Lee, J. Lee, B. Kim, S. Hwang, K.W. Lee, W.N. Kang, S.H. Park, Sci. Rep. 3 (2013) 1819. https://doi.org/10.1038/srep01819
  6. S.R. Dugasani, B. Park, B. Gnapareddy, S.R. Pamanji, S. Yoo, K.W. Lee, S. Lee, S.C. Jun, J.H. Kim, C. Kim, S.H. Park, RSC Adv. 5 (2015) 55839-55846. https://doi.org/10.1039/C5RA07360J
  7. S.J. Kim, J. Jung, K.W. Lee, D. Yoon, T.S. Jung, S.R. Dugasani, S.H. Park, H.J. Kim, ACS Appl. Mater. Interfaces 5 (2013) 10715-10720. https://doi.org/10.1021/am402857w
  8. S.R. Dugasani, M. Kim, I. Lee, J. Kim, B. Gnapareddy, K.W. Lee, T. Kim, H. Nam, G.H. Kim, S.C. Park, S.H. Park, Nanotechnology 26 (2015) 275604. https://doi.org/10.1088/0957-4484/26/27/275604
  9. S.R. Dugasani, T. Ha, B. Gnapareddy, K. Choi, J. Lee, B. Kim, J.H. Kim, S.H. Park, ACS Appl. Mater. Interfaces 6 (2014) 17599-17605. https://doi.org/10.1021/am503614x
  10. B. Gnapareddy, S.R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J.H. Kim, K. Oh, S.H. Park, Sci. Rep. 5 (2015) 12722. https://doi.org/10.1038/srep12722
  11. B. Gnapareddy, T. Ha, S.R. Dugasani, J. Kim, B. Kim, T. Kim, J.H. Kim, S.H. Park, RSC Adv. 5 (2015) 39409-39415. https://doi.org/10.1039/C5RA02924D
  12. A.A. Gabizon, Clin. Cancer Res. 7 (2001) 223-225.
  13. J. Kopecek, P. Kopeckova, T. Minko, Z. Lu, Eur. J. Pharm. Biopharm. 50 (2000) 61-81. https://doi.org/10.1016/S0939-6411(00)00075-8
  14. A.Z. Wang, R. Langer, O.C. Farokhzad, Annu. Rev. Med. 63 (2012) 185-198. https://doi.org/10.1146/annurev-med-040210-162544
  15. Q. Jiang, C. Song, J. Nangreave, X. Liu, L. Lin, D. Qiu, G.Z. Wang, G. Zou, X. Liang, H. Yan, B. Ding, J. Am. Chem. Soc. 134 (2012) 13396-13403. https://doi.org/10.1021/ja304263n
  16. M. Konishi, Y. Tabata, M. Kariya, A. Suzuki, M. Mandai, K. Nanbu, K. Takakura, S. Fujii, J. Contr. Release 92 (2003) 301-313. https://doi.org/10.1016/S0168-3659(03)00364-X
  17. Y. Wu, K. Sefah, H. Liu, R. Wang, W. Tan, Proc. Natl. Acad. Sci. 107 (2010) 5-10. https://doi.org/10.1073/pnas.0909611107
  18. K.-R. Kim, H.Y. Kim, Y.-D. Lee, J.S. Ha, J.H. Kang, H. Jeong, D. Bang, Y.T. Ko, S. Kim, H. Lee, D.-R. Ahn, J. Contr. Release 243 (2016) 121-131. https://doi.org/10.1016/j.jconrel.2016.10.015
  19. J. Yan, C. Hu, P. Wang, B. Zhao, X. Ouyang, J. Zhou, R. Liu, D. He, C. Fan, S. Song, Angew. Chem. Int. Ed. 54 (2015) 2431-2435. https://doi.org/10.1002/anie.201408247
  20. R.A. Petros, J.M. DeSimone, Nat. Rev. Drug Discov. 9 (2010) 615-627. https://doi.org/10.1038/nrd2591
  21. A.V. Pinheiro, D. Han, W.M. Shih, H. Yan, Nat. Nanotechnol. 6 (2011) 763-772. https://doi.org/10.1038/nnano.2011.187
  22. J. Li, C. Fan, H. Pei, J. Shi, Q. Huang, Adv. Mater. 25 (2013) 4386-4396. https://doi.org/10.1002/adma.201300875
  23. J. Lee, S. Hamada, R. Amin, S. Kim, A. Kulkarni, T. Kim, Y. Roh, S. Murata, S.H. Park, Small 8 (2012) 374-377. https://doi.org/10.1002/smll.201101561
  24. S. Hamada, S. Murata, Angew. Chem. Int. Ed. 48 (2009) 6820-6823. https://doi.org/10.1002/anie.200902662
  25. J. Kim, J. Lee, S. Hamada, S. Murata, S.H. Park, Nat. Nanotechnol. 10 (2015) 528-533. https://doi.org/10.1038/nnano.2015.87
  26. E. Winfree, F. Liu, L.A. Wenzler, N.C. Seeman, Nature 394 (1998) 539-544. https://doi.org/10.1038/28998
  27. S.R. Dugasani, J.A. Kim, B.H. Kim, P. Joshirao, B. Gnapareddy, C. Vyas, T.S. Kim, S.H. Park, V. Manchanda, ACS Appl. Mater. Interfaces 6 (2014) 2974-2979. https://doi.org/10.1021/am4055723
  28. B. Park, B.J. Lee, S.R. Dugasani, Y. Cho, C. Kim, M. Seo, T. Lee, Y.M. Jhon, J. Choi, S. Lee, S.H. Park, S.C. Jun, D. Yeom, F. Rotermund, J.H. Kim, Nanoscale 7 (2015) 18089-18095. https://doi.org/10.1039/C5NR05075H
  29. J. Lee, S. Hamada, S.U. Hwang, R. Amin, J. Son, S.R. Dugasani, S. Murata, S.H. Park, Sci. Rep. 3 (2013) 2115. https://doi.org/10.1038/srep02115
  30. D. Hynek, L. Krejcova, O. Zitka, V. Adam, L. Trnkova, J. Sochor, M. Stiborova, T. Eckschlager, J. Hubalek, R. Kizek, Int. J. Electrochem. Sci. 7 (2012) 34-49.
  31. S.O. Kelly, J.K. Barton, N.M. Jackson, M.G. Hill, Bioconjugate Chem. 8 (1997) 31-37. https://doi.org/10.1021/bc960070o
  32. K.L.F. Patty, T. Claudia, J. Am. Chem. Soc. 121 (1999) 1-7. https://doi.org/10.1021/ja9826082
  33. R. Hajian, N. Shams, M. Mohagheghian, J. Braz. Chem. Soc. 20 (2009) 1399-1405. https://doi.org/10.1590/S0103-50532009000800003

Cited by

  1. Optoelectronic properties of DNA thin films implanted with titania nanoparticle-coated multiwalled carbon nanotubes vol.9, pp.1, 2018, https://doi.org/10.1063/1.5063446