DOI QR코드

DOI QR Code

Quenched Fano effect due to one Majorana zero mode coupled to the Fano interferometer

  • Wang, Qi (College of Sciences, Northeastern University) ;
  • Zhu, Yu-Lian (College of Sciences, Northeastern University)
  • Received : 2018.04.13
  • Accepted : 2018.07.09
  • Published : 2018.11.30

Abstract

We investigate the change of the Fano effect by considering one Majorana zero mode to couple laterally to the single-dot Fano interferometer. It is found that the Majorana zero mode quenches the Fano effect thoroughly and causes the conductance to be independent of the dot level, the dot-lead coupling, and the increase of the Majorana-dot coupling. As a result, the linear conductance becomes only related to the interlead coupling and the magnetic-flux phase factor. These results can be helpful for the detection of Majorana zero mode.

Keywords

References

  1. U. Fano, Phys. Rev. 124 (1961) 1866. https://doi.org/10.1103/PhysRev.124.1866
  2. J.H. Wu, J.Y. Gao, J.H. Xu, L. Silvestri, M. Artoni, G.C. La Rocca, F. Bassani, Phys. Rev. Lett. 95 (2005) 057401. https://doi.org/10.1103/PhysRevLett.95.057401
  3. O. Ujsaghy, J. Kroha, L. Szunyogh, A. Zawadowski, Phys. Rev. Lett. 85 (2000) 2557. https://doi.org/10.1103/PhysRevLett.85.2557
  4. W. Zhang, A.O. Govorov, G.W. Bryant, Phys. Rev. Lett. 97 (2006) 146804. https://doi.org/10.1103/PhysRevLett.97.146804
  5. W.J. Gong, X.Y. Sui, Y. Wang, G.D. Yu, X.H. Chen, Nanoscale Res. Lett. 8 (2013) 330. https://doi.org/10.1186/1556-276X-8-330
  6. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Rev. Mod. Phys. 82 (2010) 2257. https://doi.org/10.1103/RevModPhys.82.2257
  7. J. Gores, D. Goldhaber-Gordon, S. Heemeyer, M.A. Kastner, Phys. Rev. B 62 (2000) 2188.
  8. I.G. Zacharia, D. Goldhaber-Gordon, G. Granger, M.A. Kastner, Y.B. Khavin, H. Shtrikman, D. Mahalu, U. Meirav, Phys. Rev. B 64 (2001) 155311. https://doi.org/10.1103/PhysRevB.64.155311
  9. K. Kobayashi, H. Aikawa, S. Katsumoto, Y. Iye, Phys. Rev. Lett. 88 (2002) 256806
  10. K. Kobayashi, H. Aikawa, S. Katsumoto, Y. Iye, Phys. Rev. B 68, 235304 (2003) https://doi.org/10.1103/PhysRevB.68.235304
  11. M. Sato, H. Aikawa, K. Kobayashi, S. Katsumoto,and Y. Iye, Phys. Rev. Lett. 95, 066801 (2005) https://doi.org/10.1103/PhysRevLett.95.066801
  12. K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, and Y. Iye, Phys. Rev. B 70, 035319 (2003).
  13. K. Kang, S.Y. Cho, J. Phys. Condens. Matter 16 (2004) 117. https://doi.org/10.1088/0953-8984/16/1/011
  14. Z.-M. Bai, M.-F. Yang, Y.-C. Chen, J. Phys. Condens. Matter 16 (2004) 4303. https://doi.org/10.1088/0953-8984/16/24/012
  15. H. Lu, R. Lu, B.F. Zhu, Phys. Rev. B 71 (2005) 235320. https://doi.org/10.1103/PhysRevB.71.235320
  16. M.L. Ladron de Guevara, F. Claro, P.A. Orellana, Phys. Rev. B 67 (2003) 195335. https://doi.org/10.1103/PhysRevB.67.195335
  17. W. Gong, Y. Zheng, Y. Liu, F.N. Kariuki, T. Lu, Phys. Lett. A 372 (2008) 2934. https://doi.org/10.1016/j.physleta.2008.01.004
  18. B.R. Buika, P. Stefanski, Phys. Rev. Lett. 86 (2001) 5128. https://doi.org/10.1103/PhysRevLett.86.5128
  19. W. Hofstetter, J. Konig, H. Schoeller, Phys. Rev. Lett. 87 (2001) 156803. https://doi.org/10.1103/PhysRevLett.87.156803
  20. G.H. Ding, C.K. Kim, K. Nahm, Phys. Rev. B 71 (2005) 205313. https://doi.org/10.1103/PhysRevB.71.205313
  21. A.A. Clerk, X. Waintal, P.W. Brouwer, Phys. Rev. Lett. 86 (2001) 4636. https://doi.org/10.1103/PhysRevLett.86.4636
  22. D. Sanchez, L. Serra, Phys. Rev. B 74 (2006) 153313 https://doi.org/10.1103/PhysRevB.74.153313
  23. M. P. Nowak, B. Szafran, and F.M. Peeters Phys. Rev. B 84, 235319 (2011).
  24. W. Gong, Y. Zheng, Physica E 41 (2009) 574 https://doi.org/10.1016/j.physe.2008.10.007
  25. H. Wu, Y. Han, Y. Wang, W. J. Gong, Physica B 419, 57(2013).
  26. A.Y. Kitaev, Phys. Usp. 44 (2001) 131. https://doi.org/10.1070/1063-7869/44/10S/S29
  27. R.M. Lutchyn, J.D. Sau, S. Das Sarma, Phys. Rev. Lett. 105 (2010) 077001. https://doi.org/10.1103/PhysRevLett.105.077001
  28. Y. Oreg, G. Refael, F. von Oppen, Phys. Rev. Lett. 105 (2010) 177002. https://doi.org/10.1103/PhysRevLett.105.177002
  29. B.H. Wu, J.C. Cao, Phys. Rev. B 85 (2012) 085415. https://doi.org/10.1103/PhysRevB.85.085415
  30. C.J. Bolech, E. Demler, Phys. Rev. Lett. 98 (2007) 237002. https://doi.org/10.1103/PhysRevLett.98.237002
  31. J. Nilsson, A.R. Akhmerov, C.W.J. Beenakker, Phys. Rev. Lett. 101 (2008) 120403. https://doi.org/10.1103/PhysRevLett.101.120403
  32. K.T. Law, P.A. Lee, T.K. Ng, Phys. Rev. Lett. 103 (2009) 237001. https://doi.org/10.1103/PhysRevLett.103.237001
  33. L. Fu, C.L. Kane, Phys. Rev. B 79 (2009) 161408. https://doi.org/10.1103/PhysRevB.79.161408
  34. W.J. Gong, B.H. Wu, S.F. Zhang, Y.S. Zheng, Europhys. Lett. 106 (2014) 30003 https://doi.org/10.1209/0295-5075/106/30003
  35. B. H.Wu, X. Chen, C. R. Wang, and W. J. Gong, Chin. Phys. Lett. 31, 037306 (2014).
  36. D.E. Liu, H.U. Baranger, Phys. Rev. B 84 (2011) 201308(R). https://doi.org/10.1103/PhysRevB.84.201308
  37. W.J. Gong, Y. Zhao, Z. Gao, Curr. Appl. Phys. 15 (2015) 520. https://doi.org/10.1016/j.cap.2015.01.033
  38. M. Lee, J.S. Lim, R. Lopez, Phys. Rev. B 87 (2013) 241402(R). https://doi.org/10.1103/PhysRevB.87.241402
  39. Z. Gao, W.J. Gong, Phys. Rev. B 94 (2016) 104506. https://doi.org/10.1103/PhysRevB.94.104506
  40. B. Zocher, B. Rosenow, Phys. Rev. Lett. 111 (2013) 036802. https://doi.org/10.1103/PhysRevLett.111.036802