• Title/Summary/Keyword: WRF model

Search Result 257, Processing Time 0.03 seconds

Evaluation of Urban Weather Forecast Using WRF-UCM (Urban Canopy Model) Over Seoul (WRF-UCM (Urban Canopy Model)을 이용한 서울 지역의 도시기상 예보 평가)

  • Byon, Jae-Young;Choi, Young-Jean;Seo, Bum-Geun
    • Atmosphere
    • /
    • v.20 no.1
    • /
    • pp.13-26
    • /
    • 2010
  • The Urban Canopy Model (UCM) implemented in WRF model is applied to improve urban meteorological forecast for fine-scale (about 1-km horizontal grid spacing) simulations over the city of Seoul. The results of the surface air temperature and wind speed predicted by WRF-UCM model is compared with those of the standard WRF model. The 2-m air temperature and wind speed of the standard WRF are found to be lower than observation, while the nocturnal urban canopy temperature from the WRF-UCM is superior to the surface air temperature from the standard WRF. Although urban canopy temperature (TC) is found to be lower at industrial sites, TC in high-intensity residential areas compares better with surface observation than 2-m temperature. 10-m wind speed is overestimated in urban area, while urban canopy wind (UC) is weaker than observation by the drag effect of the building. The coupled WRF-UCM represents the increase of urban heat from urban effects such as anthropogenic heat and buildings, etc. The study indicates that the WRF-UCM contributes for the improvement of urban weather forecast such nocturnal heat island, especially when an accurate urban information dataset is provided.

Carbon Monoxide Dispersion in an Urban Area Simulated by a CFD Model Coupled to the WRF-Chem Model (WRF-Chem 모델과 결합된 CFD 모델을 활용한 도시 지역의 일산화탄소 확산 연구)

  • Kwon, A-Rum;Park, Soo-Jin;Kang, Geon;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.679-692
    • /
    • 2020
  • We coupled a CFD model to the WRF-Chem model (WRF-CFD model) and investigated the characteristics of flows and carbon monoxide (CO) distributions in a building-congested district. We validated the simulated results against the measured wind speeds, wind directions, and CO concentrations. The WRF-Chem model simulated the winds from southwesterly to southeasterly, overestimating the measured wind speeds. The statistical validation showed that the WRF-CFD model simulated the measured wind speeds more realistically than the WRF-Chem model. The WRF-Chem model significantly underestimated the measured CO concentrations, and the WRF-CFD model improved the CO concentration prediction. Based on the statistical validation results, the WRF-CFD model improved the performance in predicting the CO concentrations by taking complicatedly distributed buildings and mobiles sources of CO into account. At 04 KST on May 22, there was a downdraft around the AQMS, and airflow with a relatively low CO concentration was advected from the upper layer. Resultantly, the CO concentration was lower at the AQMS than the surrounding area. At 15 KST on May 22, there was an updraft around the AQMS. This resulted in a slightly higher CO concentration than the surroundings. The WRF-CFD model transported CO emitted from the mobile sources to the AQMS measurement altitude, well reproducing the measured CO concentration. At 18 KST on May 22, the WRF-CFD model simulated high CO concentrations because of high CO emission, broad updraft area, and an increase in turbulent diffusion cause by wind-shear increase near the ground.

Performance Evaluation of Four Different Land Surface Models in WRF

  • Lee, Chong Bum;Kim, Jea-Chul;Belorid, Miloslav;Zhao, Peng
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.42-50
    • /
    • 2016
  • This study presents a performance evaluation of four different land surface models (LSM) available in Weather Forecast Research (WRF). The research site was located in Haean Basin in South Korea. The basin is very unique by its geomorphology and topography. For a better representation of the complex terrain in the mesoscale model were used a high resolution topography data with a spatial resolution of 30 meters. Additionally, land-use layer was corrected by ground mapping data-sets. The observation equipments used in the study were an ultrasonic anemometer with a gas analyzer, an automatic weather station and a tethered balloon sonde. The model simulation covers a four-day period during autumn. The result shows significant impact of LSM on meteorological simulation. The best agreement between observation and simulation was found in the case of WRF with Noah LSM (WRF-Noah). The WRF with Rapid Update Cycle LSM (WRF-RUC) has a very good agreement with temperature profiles due to successfully predicted fog which appeared during measurements and affected the radiation budget at the basin floor. The WRF with Pleim and Xiu LSM (WRF-PX) and WRF with Thermal Diffusion LSM (WRF-TD) performed insufficiently for simulation of heat fluxes. Both overestimated the sensible and underestimated the latent heat fluxes during the daytime.

Parameter Calibration for WRF-Hydro model in Korea (WRF-Hydro 모형 한반도 적용을 위한 파라미터 보정)

  • Lee, Jaehyeong;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.173-173
    • /
    • 2018
  • 본 연구는 기상-수문 분야에서 고해상도 수문기상요소를 산출하기 위해 WRF-Hydro(Weather Research and Forecasting and Model Hydrological modeling extension package) 모형을 한반도 대상으로 구축하였다. 모형은 미국 대기 연구 국립센터(NOAA)에서 개발된 커뮤니티형 고해상도 예측모델이므로 미국 등에서 활발히 활용되기 시작하였으나 아직 우리나라 적용성에 대한 연구는 많지 않다. 본 연구에서는 WRF-Hydro 모형을 한반도에 적절히 사용하기 위해 표면유출, 보수깊이, 표면거칠기와 같은 파라미터를 보정하였다. WRF-Hydro는 지역 기상모형인 WRF와 연계하여 coupled WRF/WRF-Hydro 모형을 구동하였으며, 고해상도 유출값을 얻기 위해 미국 지질조사국(USGS)에서 제공한 HydroSHEDS(Hydrological data and map based on SHuttle Elevation Derivatives at multiple Scales)를 이용하였다. 본 연구에서는 관측된 유출값을 Markov Chain Monte Carlo(MCMC) 방법을 활용하여 모형값과 비교하여 파라미터 보정을 수행하였으며, 파라미터 보정된 WRF/WRF-Hydro를 활용해 한반도 과거 홍수 및 가뭄 사상을 모의하여 결과를 분석하였다.

  • PDF

A Study on the Coherence of the Precipitation Simulated by the WRF Model during a Changma Period in 2005 (WRF 모델에서 모의된 2005년 장마 기간 강수의 동조성 연구)

  • Byon, Jae-Young;Won, Hye-Young;Cho, Chun-Ho;Choi, Young-Jean
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.115-123
    • /
    • 2007
  • The present study uses the GOES IR brightness temperature to examine the temporal and spatial variability of cloud activity over the region $25^{\circ}N-45^{\circ}N$, $105^{\circ}E-135^{\circ}E$ and analyzes the coherence of eastern Asian summer season rainfall in Weather Research and Forecast (WRF) model. Time-longitude diagram of the time period from June to July 2005 shows a signal of eastward propagation in the WRF model and convective index derived from GOES IR data. The rain streaks in time-latitude diagram reveal coherence during the experiment period. Diurnal and synoptic scales are evident in the power spectrum of the time series of convective index and WRF rainfall. The diurnal cycle of early morning rainfall in the WRF model agrees with GOES IR data in the Korean Peninsula, but the afternoon convection observed by satellite observation in China is not consistent with the WRF rainfall which is represented at the dawn. Although there are errors in strength and timing of convection, the model predicts a coherent tendency of rainfall occurrence during summer season.

Applicability of WRF-HYDRO model for real flood event of Mangyeong-river watershed (만경강 유역의 실제 홍수 사상을 이용한 WRF-HYDRO 모형의 적용성 검토)

  • So, Byung-Jin;Ryou, Min-Suk;Ban, Woo-Sik;Lee, Joo Heon;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.204-204
    • /
    • 2017
  • WRF 모형은 실제 자연에서 나타나는 대기 현상의 원인을 물리적 동적 방정식들의 항으로 표현한 수치예보모형으로 전세계의 상업적 비상업적인 수치예보모형 안에서 성능이 뛰어나다고 평가되어지고 있다. WRF 모형은 오픈소스 기반의 비상업적 모형으로 사용 및 수정이 자유로운 특징이 있으며, 위성 및 레이더와 같은 고도화된 다양한 기상관측자료를 입력자료로 활용할 수 있는 장점이 있다. WRF-HYDRO 모형은 WRF 모형이 갖는 공간적인 저해상도 문제를 해결할 수 있는 고해상도의 격자를 구축할 수 있으며 유출량과 수문 변량을 추정할 수 있는 추적 모형을 추가하여 수문학적 예측 능력을 향상하고자 개발되었다. 기존 모형과의 차별성으로는 기상인자로 인하여 도출된 지표면의 수문인자들이 시간의 변동에 따라서 다음 시간의 기상인자에 영향을 미치는 피드백 구조로 구성되어 기상과 지표면이 양방향으로 연결되는 특징이 있다. 기존 모형에 비하여 향상된 구조적인 특징은 수문학적 순환과정을 자연스럽게 재현함으로서 신뢰성 있는 결과를 도출할 수 있을 것으로 판단된다. 본 연구에서는 만경강 유역의 실제 유출 사상에 대하여 WRF-HYDRO 모형을 적용하고, 홍수통제소 관할 만경강 유역내 수문 관측소 자료와의 비교를 통해 WRF-HYDRO 모형의 적용성을 검토하였다. 수문 관측소를 통한 검토 결과를 기반으로 WRF-HYDRO 모형에서 제시된 수문-기상 정보를 통하여 만경강 유역의 홍수 사상의 발생 과정에 대한 추적 및 미계측 변량의 추정에 유용하게 사용할 수 있을 것으로 판단된다.

  • PDF

Predictability Experiments of Fog and Visibility in Local Airports over Korea using the WRF Model

  • Bang, Cheol-Han;Lee, Ji-Woo;Hong, Song-You
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E2
    • /
    • pp.92-101
    • /
    • 2008
  • The objective of this study is to evaluate and improve the capability of the Weather Research and Forecasting (WRF) model in simulating fog and visibility in local airports over Korea. The WRF model system is statistically evaluated for the 48-fog cases over Korea from 2003 to 2006. Based on the 4-yr evaluations, attempts are made to improve the simulation skill of fog and visibility over Korea by revising the statistical coefficients in the visibility algorithms of the WRF model. A comparison of four existing visibility algorithms in the WRF model shows that uncertainties in the visibility algorithms include additional degree of freedom in accuracy of numerical fog forecasts over Korea. A revised statistical algorithm using a linear-regression between the observed visibility and simulated hydrometeors and humidity near the surface exhibits overall improvement in the visibility forecasts.

Evaluation of Reproduced Precipitation by WRF in the Region of CORDEX-East Asia Phase 2 (CORDEX-동아시아 2단계 영역 재현실험을 통한 WRF 강수 모의성능 평가)

  • Ahn, Joong-Bae;Choi, Yeon-Woo;Jo, Sera
    • Atmosphere
    • /
    • v.28 no.1
    • /
    • pp.85-97
    • /
    • 2018
  • This study evaluates the performance of the Weather Research and Forecasting (WRF) model in reproducing the present-day (1981~2005) precipitation over Far East Asia and South Korea. The WRF model is configured with 25-km horizontal resolution within the context of the COordinated Regional climate Downscaling Experiment (CORDEX) - East Asia Phase 2. The initial and lateral boundary forcing for the WRF simulation are derived from European Centre for Medium-Range Weather Forecast Interim reanalysis. According to our results, WRF model shows a reasonable performance to reproduce the features of precipitation, such as seasonal climatology, annual and inter-annual variabilities, seasonal march of monsoon rainfall and extreme precipitation. In spite of such model's ability to simulate major features of precipitation, systematic biases are found in the downscaled simulation in some sub-regions and seasons. In particular, the WRF model systematically tends to overestimate (underestimate) precipitation over Far East Asia (South Korea), and relatively large biases are evident during the summer season. In terms of inter-annual variability, WRF shows an overall smaller (larger) standard deviation in the Far East Asia (South Korea) compared to observation. In addition, WRF overestimates the frequency and amount of weak precipitation, but underestimates those of heavy precipitation. Also, the number of wet days, the precipitation intensity above the 95 percentile, and consecutive wet days (consecutive dry days) are overestimated (underestimated) over eastern (western) part of South Korea. The results of this study can be used as reference data when providing information about projections of fine-scale climate change over East Asia.

Simulation of Air Quality Over South Korea Using the WRF-Chem Model: Impacts of Chemical Initial and Lateral Boundary Conditions (WRF-Chem 모형을 이용한 한반도 대기질 모의: 화학 초기 및 측면 경계 조건의 영향)

  • Lee, Jae-Hyeong;Chang, Lim-Seok;Lee, Sang-Hyun
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.639-657
    • /
    • 2015
  • There is an increasing need to improve the air quality over South Korea to protect public health from local and remote anthropogenic pollutant emissions that are in an increasing trend. Here, we evaluate the performance of the WRF-Chem (Weather Research and Forecasting-Chemistry) model in simulating near-surface air quality of major Korean cities, and investigate the impacts of time-varying chemical initial and lateral boundary conditions (IC/BCs) on the air quality simulation using a chemical downscaling technique. The model domain was configured over the East Asian region and anthropogenic MICS-Asia 2010 emissions and biogenic MEGAN-2 emissions were applied with RACM gaseous chemistry and MADE/SORGAM aerosol mechanism. Two simulations were conducted for a 30-days period on April 2010 with chemical IC/BCs from the WRF-Chem default chemical species profiles ('WRF experiment') and the MOZART-4 (Model for OZone And Related chemical Tracers version 4) ('WRF_MOZART experiment'), respectively. The WRF_MOZART experiment has showed a better performance to predict near-surface CO, $NO_2$, $SO_2$, and $O_3$ mixing ratios at 7 major Korean cities than the WRF experiment, showing lower mean bias error (MBE) and higher index of agreement (IOA). The quantitative impacts of the chemical IC/BCs have depended on atmospheric residence time of the pollutants as well as the relative difference of chemical mixing ratios between the WRF and WRF_MOZART experiments at the lateral boundaries. Specifically, the WRF_MOZART experiment has reduced MBE in CO and O3 mixing ratios by 60~80 ppb and 5~10 ppb over South Korea than those in the WRF-Chem default simulation, while it has a marginal impact on $NO_2$ and $SO_2$ mixing ratios. Without using MOZART-4 chemical IC, the WRF simulation has required approximately 6-days chemical spin-up time for the East Asian model domain. Overall, the results indicate that realistic chemical IC/BCs are prerequisite in the WRF-Chem simulation to improve a forecast skill of local air quality over South Korea, even in case the model domain is sufficiently large to represent anthropogenic emissions from China, Japan, and South Korea.

Improvement in Regional-Scale Seasonal Prediction of Agro-Climatic Indices Based on Surface Air Temperature over the United States Using Empirical Quantile Mapping (경험적 분위사상법을 이용한 미국 지표 기온 기반 농업기후지수의 지역 규모 계절 예측성 개선)

  • Chan-Yeong, Song;Joong-Bae, Ahn;Kyung-Do, Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.201-217
    • /
    • 2022
  • The United States is one of the largest producers of major crops such as wheat, maize, and soybeans, and is a major exporter of these crops. Therefore, it is important to estimate the crop production of the country in advance based on reliable long- term weather forecast information for stable crops supply and demand in Korea. The purpose of this study is to improve the seasonal predictability of the agro-climatic indices over the United States by using regional-scale daily temperature. For long-term numerical weather prediction, a dynamical downscaling is performed using Weather Research and Forecasting (WRF) model, a regional climate model. As the initial and lateral boundary conditions of WRF, the global hourly prediction data obtained from the Pusan National University Coupled General Circulation Model (PNU CGCM) are used. The integration of WRF is performed for 22 years (2000-2021) for period from June to December of each year. The empirical quantile mapping, one of the bias correction methods, is applied to the timeseries of downscaled daily mean, minimum, and maximum temperature to correct the model biases. The uncorrected and corrected datasets are referred WRF_UC and WRF_C, respectively in this study. The daily minimum (maximum) temperature obtained from WRF_UC presents warm (cold) biases over most of the United States, which can be attributed to the underestimated the low (high) temperature range. The results show that WRF_C simulates closer to the observed temperature than WRF_UC, which lead to improve the long- term predictability of the temperature- based agro-climatic indices.