DOI QR코드

DOI QR Code

Characteristics of Byproducts during Anaerobic Hydrogen Fermentation Using Protein

단백질을 이용한 혐기성 수소 발효시 부산물 발생 특성 평가

  • LEE, CHAE-YOUNG (Department of Civil Eng., The University of Suwon) ;
  • HAN, SUN-KEE (Department of Environmental Health, Korea National Open University)
  • 이채영 (수원대학교 토목공학과) ;
  • 한선기 (한국방송통신대학교 환경보건학과)
  • Received : 2018.10.04
  • Accepted : 2018.10.30
  • Published : 2018.10.30

Abstract

This study was performed to evaluate initial pH and substrate concentration on hydrogen fermentation of protein. The optimum initial pH and substrate concentration of hydrogen fermentation using protein was 8.0 and 1.0 g peptone/L, respectively. The maximum hydrogen yield at initial pH 8.0 and 1.0 g peptone/L was $19.2{\pm}0.8mL\;H_2/g$ peptone. As results of VFAs analysis, percentages of valerate was similar to hydrogen yield. Also, C. stickalandii, which was hydrogen and valerate producing bacteria, was dominated.

Keywords

References

  1. A. Obradovic, B. Likozar, and J. Levec, "Catalytic surface development of novel nickel plate catalyst with combined thermally annealed platinum and alumina coating for steam methane reforming", Int. J. Hydrogen Energy, Vol. 38, 2013, pp. 1419-1429. https://doi.org/10.1016/j.ijhydene.2012.11.015
  2. A. Obradovic, B. Likozar, and J. Levec, "Steam methane reforming over Ni-based pellet-type and Pt/Ni/Al2O3 structured plate-type catalyst: intrinsic kinetics study", Ind. Eng. Chem. Res., Vol. 52, 2013, pp. 13597-13606. https://doi.org/10.1021/ie401551m
  3. J. Wang and W. Wan, "Factors influencing fermentative hydrogen production: a review", Int. J. Hydrogen Energy, Vol. 34, 2009, pp. 799-811. https://doi.org/10.1016/j.ijhydene.2008.11.015
  4. M. Sostaric, D. Klinar, M. Bricelj, J. Golob, M. Berovic, and B. Likozar, "Growth lipid extraction and thermal degradation of the microalga Chlorella vulagris", New Biotechnol., Vol. 29, 2012, pp. 325-331. https://doi.org/10.1016/j.nbt.2011.12.002
  5. Z. Yang, R. Guo, X. Xu, X. Fan, and S. Luo, "Hydrogen and methane production from lipid-exraced microalgal biomass residues", Int. J. Hydrogen Energy, Vol. 36, 2011, pp. 3465-3470. https://doi.org/10.1016/j.ijhydene.2010.12.018
  6. D. Call and B. E. Logan, "Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane", Environmental Science and Technology, Vol. 42, 2008, pp. 3401-3406. https://doi.org/10.1021/es8001822
  7. L. B. Brentner, J. Peccia, and J. B. Zimmerman, "Challenges in developing biohydrogen as a sustainable energy source: Implications for a research agenda", Environmental Science and Technology, Vol. 44, 2010, pp. 2243-2254. https://doi.org/10.1021/es9030613
  8. X, Gomez, C. Fernandez, J. Fierro, M. E. Sanchez, A. Escapa, and A. Moran, "Hydrogen production: Two stage processes for waste degradation", Bioresource Technology, Vol. 102, 2011, pp. 8621-8627. https://doi.org/10.1016/j.biortech.2011.03.055
  9. H. S. Lee, W. F. Vermaas, and B. E. Rittmann, "Biological hydrogen production: Prospects and challenges", Trends in Biotechnology, Vol. 28, 2010, pp. 262-271. https://doi.org/10.1016/j.tibtech.2010.01.007
  10. D. Li, Z. Yuan, Y. Sun, X. Kong, and Y. Zhang, "Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation", Int. J. Hydrogen Energy, Vol. 34, 2009, pp. 812-820. https://doi.org/10.1016/j.ijhydene.2008.11.031
  11. C. Lin and C. Cheng, "Fermentative hydrogen production xylose using anaerobic mixed microfla", Int. J. Hydrogen Energy, Vol. 31, 2006, pp. 832-840. https://doi.org/10.1016/j.ijhydene.2005.08.010
  12. H. Su, J. Cheng, J. Zhou, W. Song, and K. Cen, "Combination of dark- and photo-fermentation to enhance hydrogen production and energy conversion efficiency", Int. J. Hydrogen Energy, Vol. 34, 2009, pp. 8846-8853. https://doi.org/10.1016/j.ijhydene.2009.09.001
  13. G. C. Dismukes, D. Carrieri, N. Bennette, G. M. Anayev, and M. C. Posewitz, "Aquatic phototrophs: efficient alternatives to land-based crops for biofuels", Curr. Opin. Biotechnol., Vol. 19, 2008, pp. 235-240. https://doi.org/10.1016/j.copbio.2008.05.007
  14. J. W. Barnett, G. J. Kerridge, and J. M. Ressell, "Effluent treatment systems for the dariy industry", Aust. Biotechnol., Vol. 4, 1994, pp. 26-30.
  15. A, Xia, J. Cheng, R. Lin, J. Liu, J. Zhou, and K. Cen, "Sequential generation of hydrogen and methane from glutamic acid through combined photo-fermentation and methanogenesis", Bioresour. Technol., Vol. 131, 2013, pp. 146-151. https://doi.org/10.1016/j.biortech.2012.12.009
  16. M. Bai, S. Cheng, and Y. Chao, "Effects of substrate components on hydrogen fermentation of multiple substrates", Water Sci. Technol., Vol. 50, 2004, pp. 209-216.
  17. J. Cheng, L. Ding, A. Xia, R. Lin, Y. Li, J. Zhou, and K. Cen, "Hydrogen production using amino acids obtained by protein degradation in waste biomass by combined dark- and photo-fermentatioin", Bioresour. Technol., Vol. 179, 2015, pp. 13-19. https://doi.org/10.1016/j.biortech.2014.11.109
  18. B. Xiao, Y. Han, and J. Lin, "Evaluation of biohydrogen production from glucose and protein at neutral initial pH", Int. J. Hydrogen Energy, Vol. 35, 2010, pp. 6152-6160. https://doi.org/10.1016/j.ijhydene.2010.03.084
  19. C. Lee, S. Lee, and S. Hwang, "Effect of heat treatment on the start-up performance for anaerobic hydrogen fermentation of food waste", Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, No. 6, 2011, pp. 765-771. https://doi.org/10.7316/KHNES.2011.22.6.765
  20. D. Akroum-Amrouche, H. Lounici, N. abdi, and N. Mameri, "Dark fermentative hydrogen production rate from glucose using facultative anaerobic bacteria E. coli", International Conference on Control, Engineering & Information Technology 2014, Proceeding Engineering & Technology, 2014, Sousse, Tunisia.
  21. N. Xiao, Y, Chen, A. Chen, and L. Feng, "Enhanced bio-hyrogen production from protein wastewater by altering protein structure and amino acids acidification type", Scientific Reports, Vol. 4, 2014, pp. 1-9.
  22. Y. Akutsu, D. Y. Lee, Y. Y. Li, and T. Noike, "Hydrogen production potentials and fermentative characteristics of various substrates with different heat-pretreated natural microfla", Int. J. Hydroen Energy, Vol. 34, 2009, pp. 5365-5372. https://doi.org/10.1016/j.ijhydene.2009.04.052
  23. D. H. Kim, S. H. Kim, and H. S. Shin, "Sodium inhibition of fermentative hydrogen production", Int. J. Hydrogen Energy, Vol. 34, 2009, pp. 3295-3304. https://doi.org/10.1016/j.ijhydene.2009.02.051