DOI QR코드

DOI QR Code

효소활성 증가 돌연변이를 함유한 DUSP19의 결정구조

Crystal Structure of an Activity-enhancing Mutant of DUSP19

  • 주다경 (한양대학교 공과대학 생명공학과) ;
  • 전태진 (한양대학교 공과대학 생명공학과) ;
  • 류성언 (한양대학교 공과대학 생명공학과)
  • Ju, Da Gyung (Department of Bioengineering, College of Engineering, Hanyang University) ;
  • Jeon, Tae Jin (Department of Bioengineering, College of Engineering, Hanyang University) ;
  • Ryu, Seong Eon (Department of Bioengineering, College of Engineering, Hanyang University)
  • 투고 : 2018.08.14
  • 심사 : 2018.10.05
  • 발행 : 2018.10.30

초록

이중탈인산화효소(DUSP)는 성장인자활성 단백질키나제(MAPK)를 조절해서 세포성장과 분화에 관여하며 암, 당뇨병, 면역질환, 신경질환의 신약개발표적이다. DUSP 단백질군에 속하는 DUSP19는c-Jun N-말단 키나제(JNK)를 조절하며 골관절염의 질환화과정에 관여한다. 우리는 야생형 DUSP19 에 비하여 상당히 활성이 증가된 cavity 형성 돌연변이인 DUSP19-L75A의 결정구조를 규명하였다. 결정구조는 Leu75의 곁가지가 없어진 결과로 cavity가 잘 형성되어 있는 것을 보여주며, 활성부위에 결합한 황이온이 회전된 형태로 존재하는 것을 보여준다. Cavity 형성에도 불구하고 cavity를 둘러싸고 있는 잔기들은 그다지 재조정되지 않은 것으로 나타나며 그 대신에 멀리 떨어진 트립토판 잔기가 소수성결합을 강화하고 있는 것으로 나타나서 L75A 돌연변이의 접힘은 cavity 부위의 재조정이 아니라 글로벌 접힘 에너지 최소화 기작에 의해 안정화 되었음을 발견할 수 있었다. 회전된 활성화부위 황이온의 구조는 인산화티로신 잔기와 유사함이 발견되어 L75A 돌연변이가 최적의 활성화형태를 유도했다는 것을 알 수 있었다. 내부 cavity에 의한 활성증가현상과 이에 대한 구조적 정보는 DUSP19의 알로스테릭 조절과 치료제 개발에 정보를 제공한다.

Dual-specificity phosphatases (DUSPs) play a role in cell growth and differentiation by modulating mitogen-activated protein kinases. DUSPs are considered targets for drugs against cancers, diabetes, immune diseases, and neuronal diseases. Part of the DUSP family, DUSP19 modulates c-Jun N-terminal kinase activity and is involved in osteoarthritis pathogenesis. Here, we report screening of cavity-creating mutants and the crystal structure of a cavity-creating L75A mutant of DUSP19 which has significantly enhanced enzyme activity in comparison to the wild-type protein. The crystal structure reveals a well-formed cavity due to the absent Leu75 side chain and a rotation of the active site-bound sulfate ion. Despite the cavity creation, residues surrounding the cavity did not rearrange significantly. Instead, a tightened hydrophobic interaction by a remote tryptophan residue was observed, indicating that the protein folding of the L75A mutant is stabilized by global folding energy minimization, not by local rearrangements in the cavity region. Conformation of the rotated active site sulfate ion resembles that of the phosphor-tyrosine substrate, indicating that cavity creation induces an optimal active site conformation. The activity enhancement by an internal cavity and its structural information provide insight on allosteric modulation of DUSP19 activity and development of therapeutics.

키워드

참고문헌

  1. Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. and Zwart, P. H. 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221. https://doi.org/10.1107/S0907444909052925
  2. Bermudez, O., Pages, G. and Gimond, C. 2010. The dual-specificity MAP kinase phosphatases: critical roles in development and cancer. Am. J. Physiol. Cell Physiol. 299, C189-202. https://doi.org/10.1152/ajpcell.00347.2009
  3. Boopathy, S., Silvas, T. V., Tischbein, M., Jansen, S., Shandilya, S. M., Zitzewitz, J. A., Landers, J. E., Goode, B. L., Schiffer, C. A. and Bosco, D. A. 2015. Structural basis for mutation-induced destabilization of profilin 1 in ALS. Proc. Natl. Acad. Sci. USA. 112, 7984-7989. https://doi.org/10.1073/pnas.1424108112
  4. Chen, Y. N., LaMarche, M. J., Chan, H. M., Fekkes, P., Garcia-Fortanet, J., Acker, M. G., Antonakos, B., Chen, C. H., Chen, Z., Cooke, V. G., Dobson, J. R., Deng, Z., Fei, F., Firestone, B., Fodor, M., Fridrich, C., Gao, H., Grunenfelder, D., Hao, H. X., Jacob, J., Ho, S., Hsiao, K., Kang, Z. B., Karki, R., Kato, M., Larrow, J., La Bonte, L. R., Lenoir, F., Liu, G., Liu, S., Majumdar, D., Meyer, M. J., Palermo, M., Perez, L., Pu, M., Price, E., Quinn, C., Shakya, S., Shultz, M. D., Slisz, J., Venkatesan, K., Wang, P., Warmuth, M., Williams, S., Yang, G., Yuan, J., Zhang, J. H., Zhu, P., Ramsey, T., Keen, N. J., Sellers, W. R., Stams, T. and Fortin, P. D. 2016. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 535, 148-152.
  5. Choy, M. S., Li, Y., Machado, L., Kunze, M. B. A., Connors, C. R., Wei, X., Lindorff-Larsen, K., Page, R. and Peti, W. 2017. Conformational rigidity and protein dynamics at distinct timescales regulate PTP1B activity and allostery. Mol. Cell 65, 644-658 e645. https://doi.org/10.1016/j.molcel.2017.01.014
  6. Duric, V., Banasr, M., Licznerski, P., Schmidt, H. D., Stockmeier, C. A., Simen, A. A., Newton, S. S. and Duman, R. S. 2010. A negative regulator of MAP kinase causes depressive behavior. Nat. Med. 16, 1328-1332. https://doi.org/10.1038/nm.2219
  7. Emsley, P., Lohkamp, B., Scott, W. G. and Cowtan, K. 2010. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486-501.
  8. Jeon, T. J., Nam, K. T. and Ryu, S. E. 2015. Structural analysis of activity-modulating mutations of DUSP19. Biodesign 3, 111-116.
  9. Keyse, S. M. 2008. Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev. 27, 253-261.
  10. Krishnan, N., Koveal, D., Miller, D. H., Xue, B., Akshinthala, S. D., Kragelj, J., Jensen, M. R., Gauss, C. M., Page, R., Blackledge, M., Muthuswamy, S. K., Peti, W. and Tonks, N. K. 2014. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat. Chem. Biol. 10, 558-566. https://doi.org/10.1038/nchembio.1528
  11. Li, G., Yu, M., Lee, W. W., Tsang, M., Krishnan, E., Weyand, C. M. and Goronzy, J. J. 2012. Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat. Med. 18, 1518-1524. https://doi.org/10.1038/nm.2963
  12. Mukherjee, J. and Gupta, M. N. 2015. Increasing importance of protein flexibility in designing biocatalytic processes. Biotechnol. Rep. (Amst) 6, 119-123. https://doi.org/10.1016/j.btre.2015.04.001
  13. Park, S. Y., Ha, S. C. and Kim, Y. G. 2017. The protein crystallography beamlines at the Pohang Light Source II. Biodesign 5, 30-34.
  14. Patterson, K. I., Brummer, T., O'Brien, P. M. and Daly, R. J. 2009. Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem. J. 418, 475-489.
  15. Pulido, R. and Hooft van Huijsduijnen, R. 2008. Protein tyrosine phosphatases: dual-specificity phosphatases in health and disease. FEBS J. 275, 848-866. https://doi.org/10.1111/j.1742-4658.2008.06250.x
  16. Ryu, S. E. and Kim, S. J. 2014. Targeting allosteric sites for protein tyrosine phosphatase inhibition. Biodesign 2, 81-90.
  17. Stanford, S. M., Aleshin, A. E., Zhang, V., Ardecky, R. J., Hedrick, M. P., Zou, J., Ganji, S. R., Bliss, M. R., Yamamoto, F., Bobkov, A. A., Kiselar, J., Liu, Y., Cadwell, G. W., Khare, S., Yu, J., Barquilla, A., Chung, T. D. Y., Mustelin, T., Schenk, S., Bankston, L. A., Liddington, R. C., Pinkerton, A. B. and Bottini, N. 2017. Diabetes reversal by inhibition of the low-molecular-weight tyrosine phosphatase. Nat. Chem. Biol. 13, 624-632. https://doi.org/10.1038/nchembio.2344
  18. Wang, Y., Xu, Z., Wang, J. and Xu, S. 2016. DUSP19, a downstream effector of leptin, inhibits chondrocyte apoptosis via dephosphorylating JNK during osteoarthritis pathogenesis. Mol. Biosyst. 12, 721-728. https://doi.org/10.1039/C5MB00776C
  19. Wei, C. H., Ryu, S. Y., Jeon, Y. H., Yoon, M. Y., Jeong, D. G., Kim, S. J. and Ryu, S. E. 2011. Crystal structure of a novel mitogen-activated protein kinase phosphatase, SKRP1. Proteins 79, 3242-3246. https://doi.org/10.1002/prot.23156
  20. Wei, C. H. and Ryu, S. E. 2016. Structural mobility of the active site in classical protein tyrosine phosphatases and dual specificity phosphatases. Biodesign 4, 77-87.
  21. Wei, C. H., Min, H. G., Kim, M., Kim, G. H., Chun, H. J. and Ryu, S. E. 2018. Two intermediate states of the conformational switch in dual specificity phosphatase 13a. Pharmacol. Res. 128, 211-219. https://doi.org/10.1016/j.phrs.2017.10.006
  22. Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A. and Wilson, K. S. 2011. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235-242. https://doi.org/10.1107/S0907444910045749
  23. Xia, Y., DiPrimio, N., Keppel, T. R., Vo, B., Fraser, K., Battaile, K. P., Egan, C., Bystroff, C., Lovell, S., Weis, D. D., Anderson, J. C. and Karanicolas, J. 2013. The designability of protein switches by chemical rescue of structure: mechanisms of inactivation and reactivation. J. Am. Chem. Soc. 135, 18840-18849. https://doi.org/10.1021/ja407644b
  24. Yao, Z. Z., Hu, A. X. and Liu, X. S. 2017. DUSP19 regulates IL-1beta-induced apoptosis and MMPs expression in rat chondrocytes through JAK2/STAT3 signaling pathway. Biomed. Pharmacother. 96, 1209-1215.
  25. Zama, T., Aoki, R., Kamimoto, T., Inoue, K., Ikeda, Y. and Hagiwara, M. 2002. A novel dual specificity phosphatase SKRP1 interacts with the MAPK kinase MKK7 and inactivates the JNK MAPK pathway. Implication for the precise regulation of the particular MAPK pathway. J. Biol. Chem. 277, 23909-23918. https://doi.org/10.1074/jbc.M200837200
  26. Zama, T., Aoki, R., Kamimoto, T., Inoue, K., Ikeda, Y. and Hagiwara, M. 2002. Scaffold role of a mitogen-activated protein kinase phosphatase, SKRP1, for the JNK signaling pathway. J. Biol. Chem. 277, 23919-23926. https://doi.org/10.1074/jbc.M200838200