DOI QR코드

DOI QR Code

Origin of the Eocene Gyeongju A-type Granite, SE Korea: Implication for the High Fluorine Contents

에오세 경주 A-형 화강암의 기원: 높은 불소 함량에 대한 고찰

  • Myeong, Bora (Deep-sea and Seabed Resources Research Center, Korea Institute of Ocean Science & Technology (KIOST)) ;
  • Kim, Jung-Hoon (Division of Environment Policy) ;
  • Woo, Hyeong-Dong (Department of Structural System and Site Safety Evaluation, Korea Institute of Nuclear Safety (KINS)) ;
  • Jang, Yun Deuk (Department of Geology, Kyungpook National University)
  • 명보라 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 김정훈 (경상북도청 환경정책과) ;
  • 우현동 (한국원자력안전기술원 구조.부지평가실) ;
  • 장윤득 (경북대학교 지질학과)
  • Received : 2018.07.30
  • Accepted : 2018.10.27
  • Published : 2018.10.28

Abstract

The Eocene Gyeongju granitoids in SE Korea are alkali feldspar granite (AGR), biotite granite (BTGR), and hornblende biotite granodiorite (HBGD) along Yangsan fault and Ulsan fault. According to their geochemical characteristics, these granitoids are classified as A-type (AGR) and I-type (BTGR and HBGD) granitoids, and regarded that were derived from same parental magma in upper mantle. The hornblende and biotite of AGR as an interstitial phase indicate that influx of F-rich fluid during the crystallization of AGR magma. AGR is enriched LILE (except Sr and Ba) and LREE that indicate the influences for subduction released fluids. The highest HFSE contents and zircon saturation temperature of AGR among the Eocene Gyeongju granitoids may indicate that it was affected by partial melting rather than magma fractionation. These characteristics may represent that the high F contents of AGR was affected by F-rich fluid derived from the subducted slab and partial melting. It corresponds with the results of the REE modeling and the dehydrated fluid component (Ba/Th) modeling showing that AGR (A-type) was formed by the partial melting of BTGR (I-type) with the continual influx of F-rich fluid derived from the subducted slab.

한반도 남동부에 분포하는 에오세 경주 화강암체들은 양산단층과 울산단층을 따라 분포하며, 알칼리장석화강암(AGR), 흑운모화강암(BTGR), 각섬석흑운모화강섬록암으로 분류된다. 지화학적 특성에 따라 이들은 A-형 화강암 (AGR)과 I-형 화강암 (BTGR)로 분류되며, 상부맨틀 내의 같은 모마그마로부터 유래한 것으로 생각된다. AGR의 경우, 유색광물들 (각섬석, 흑운모)이 간극상으로 관찰되는데 이는 AGR 마그마의 결정화 동안 Fluorine (F)이 풍부한 유체가 유입되었을 것으로 생각된다. AGR은 친석원소와 (Sr, Ba 제외) 경희토류원소의 함량이 높으며, 이는 섭입대에서 유래한 유체의 영향으로 생각된다. 에오세 경주 화강암체 중 AGR의 가장 높은 고장력원소 함량과 저어콘포화온도는 마그마 결정분화보다는 부분용융의 영향으로 판단된다. 이들 특징들은 AGR의 높은 F 함량이 섭입슬랩에서 유래한 F이 풍부한 유체와 부분 용융의 영향을 나타내는 것으로 추정할 수 있다. 또한 이러한 결과는 이 연구에서 수행한 희토류원소와 Ba/Th 모델링과도 일치한다. 따라서 이 연구에서는 AGR은 BTGR의 부분용융과 섭입슬랩에서 유래한 F이 풍부한 유체의 유입의 영향이 합쳐져 형성된 것으로 판단하였다.

Keywords

References

  1. Agangi, A., Kamenetsky, V.S. and McPhie, J. (2010) The role of fluorine in the concentration and transport of lithophile trace elements in felsic magmas: Insights from the Gawler Range Volcanics, South Australia. Chem Geol., v.273, p.314-325. https://doi.org/10.1016/j.chemgeo.2010.03.008
  2. Anderson, I.C., Frost, C.D. and Frost, B.R. (2003) Petrogenesis of the Red Mountain pluton, Laramie anorthosite complex, Wyoming: implications for the origin of A-type granite. Precambrian Res., v.124, p.243-267. https://doi.org/10.1016/S0301-9268(03)00088-3
  3. Anderson, J.L. (1983) Proterozoic anorogenic granite plutonism of North America. Geological Society of America Memoirs., v.161, p.133-154.
  4. Arth, J.G. (1976) Behavior of trace elements during magmatic processes: a summary of theoretical models and their applications. J. Res. US Geol. Surv.;(United States). p.4.
  5. Banno, S., Sakai, C. and Higashino, T. (1986) Pressure-temperature trajectory of the Sanbagawa metamorphism deduced from garnet zoning. Lithos, v.19, p.51-63. https://doi.org/10.1016/0024-4937(86)90015-0
  6. Bohlen, S.R., Boettcher, A., Wall, V. and Clemens, J. (1983) Stability of phlogopite-quartz and sanidine-quartz: a model for melting in the lower crust. Contributions to Mineralogy and Petrology, v.83, p.270-277. https://doi.org/10.1007/BF00371195
  7. Bonin, B. (2007) A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, v.97, p.1-29. https://doi.org/10.1016/j.lithos.2006.12.007
  8. Bromiley, D.W. and Kohn, S.C. (2007) Comparisons between fluoride and hydroxide incorporation in nominally anhydrous and fluorine-free mantle minerals. Geochim Cosmochim Ac., v.71, p.124-124.
  9. Chappell, B.W. and Stephens, W.E. (1988) Origin of infracrustal (I-type) granite magmas. Earth and Environmental Science Transactions of the Royal Society of Edinburgh., v.79, p.71-86. https://doi.org/10.1017/S0263593300014139
  10. Charoy, B. and Raimbault, L. (1994) Zr-, Th-, and REErich biotite differentiates in the A-type granite pluton of Suzhou (Eastern China): the key role of fluorine. Journal of Petrology, v.35, p.919-962. https://doi.org/10.1093/petrology/35.4.919
  11. Cheong, A.C.-S. and Jo, H.J. (2017) Crustal evolution in the Gyeongsang Arc, southeastern Korea: Geochronological, geochemical and Sr-Nd-Hf isotopic constraints from granitoid rocks. American Journal of Science, v.317, p.369-410. https://doi.org/10.2475/03.2017.03
  12. Chough, S. and Sohn, Y. (2010) Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: new view. Earth-Science Reviews., v.101, p.225-249. https://doi.org/10.1016/j.earscirev.2010.05.004
  13. Clemens, J.D., Holloway, J.R., and White, A.J.R. (1986) Origin of an A-type granite: experimental constraints. American Mineralogist, v.71, p.317-324.
  14. Collins, W., Beams, S., White, A. and Chappell, B. (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, v.80, p.189-200. https://doi.org/10.1007/BF00374895
  15. Creaser, R.A., Price, R.C. and Wormald, R.J. (1991) A-type granites revisited: assessment of a residual-source model. Geology, v.19, p.163-166. https://doi.org/10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2
  16. Delany, J.M. and Helgeson, H.C. (1978) Calculation of the thermodynamic consequences of dehydration in subducting oceanic crust to 100 kb and> 800 degrees C. American Journal of Science, v.278, p.638-686. https://doi.org/10.2475/ajs.278.5.638
  17. Eby, G.N. (1990) The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, v.26, p.115-134. https://doi.org/10.1016/0024-4937(90)90043-Z
  18. Eby, G.N. (1992) Chemical Subdivision of the A-Type Granitoids - Petrogenetic and Tectonic Implications. Geology., v.20, p.641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
  19. Edgar, A.D., Pizzolato, L.A. and Sheen, J. (1996) Fluorine in igneous rocks and minerals with emphasis on ultrapotassic mafic and ultramafic magmas and their mantle source regions. Mineral Mag., v.60, p.243-257. https://doi.org/10.1180/minmag.1996.060.399.01
  20. Ellis, D.J. (1986) Garnet-liquid Fe (super 2+)-Mg equilibria and implications for the beginning of melting in the crust and subduction zones. American Journal of Science, v.286, p.765-791. https://doi.org/10.2475/ajs.286.10.765
  21. Hsu, L.C. (1968) Selected phase relationships in the system Al-Mn-Fe-Si-OH: A model for garnet equilibria. J Petrol., v.9, p.40-83. https://doi.org/10.1093/petrology/9.1.40
  22. Hwang, B.H., McWilliams, M., Son, M. and Yang, K. (2007) Tectonic implication of A-type granites across the Yangsan fault, Gigye and Gyeongju areas, Southeast Korean Peninsula. Int. Geol. Rev., v.49, p.1094-1102. https://doi.org/10.2747/0020-6814.49.12.1094
  23. Imaoka, T., Kiminami, K., Nishida, K., Takemoto, M., Ikawa, T., Itaya, T., Kagami, H. and Iizumi, S. (2011) K-Ar age and geochemistry of the SW Japan Paleogene cauldron cluster: Implications for Eocene-Oligocene thermo-tectonic reactivation. J. Asian Earth Sci., v.40, p.509-533. https://doi.org/10.1016/j.jseaes.2010.10.002
  24. Jiang, Y.H., Ling, H.F., Jiang, S.Y., Fan, H.H., Shen, W.Z. and Ni, P. (2005) Petrogenesis of a Late Jurassic peraluminous volcanic complex and its high-Mg, potassic, quenched enclaves at Xiangshan, southeast China. J. Petrol., v.46, p.1121-1154. https://doi.org/10.1093/petrology/egi012
  25. Kim, C.-S. and Kim, G.-S. (1997) Petrogenesis of the early Tertiary A-type Gyeongju alkali granite in the Kyongsang Basin, Korea. Geosciences Journal., v.1, p.99-107. https://doi.org/10.1007/BF02910481
  26. King, P.L., White, A.J.R., Chappell, B.W. and Allen, C.M. (1997) Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. J. Petrol., v.38, p.371-391. https://doi.org/10.1093/petroj/38.3.371
  27. Koh, J., Yun, S. and Lee, S. (1996) Petrology and geochemical characteristics of A-type granite with particular reference to the Gyeongju Granite, Kyeonju. Journal of the Petrological Society of Korea, v.5, p.142-160. (in Korean).
  28. Kohler, J., Schonenberger, J., Upton, B. and Markl, G. (2009) Halogen and trace-element chemistry in the Gardar Province, South Greenland: Subduction-related mantle metasomatism and fluid exsolution from alkalic melts. Lithos, v.113, p.731-747. https://doi.org/10.1016/j.lithos.2009.07.004
  29. Landenberger, B. and Collins, W. J. (1996) Derivation of A-type granites from a dehydrated charnockitic lower crust: Evidence from the Chaelundi complex, eastern Australia. J. Petrol., v.37, p.145-170. https://doi.org/10.1093/petrology/37.1.145
  30. Lee, M. (1995) Mineralogy and geochemistry of the granitic rocks distributed in the Kyeongju area. MS thesis, Seoul National University, Seoul.
  31. Lee, M.J., Lee, J.I. and Lee, M.S. (1995) Mineralogy and major element geochemistry of A-type alkali granite in the Kyeongju area, Korea. Journal of the Geological Society of Korea, v.31, p.583-607.
  32. Li, H., Ling, M.-X., Ding, X., Zhang, H., Li, C.-Y., Liu, D.-Y. and Sun, W.-D. (2014) The geochemical characteristics of Haiyang A-type granite complex in Shandong, eastern China. Lithos, v.200, p.142-156.
  33. Li, H., Ling, M.-X., Li, C.-Y., Zhang, H., Ding, X., Yang, X.-Y., Fan, W.-M., Li, Y.-L. and Sun, W.-D. (2012) A-type granite belts of two chemical subgroups in central eastern China: indication of ridge subduction. Lithos, v.150, p.26-36. https://doi.org/10.1016/j.lithos.2011.09.021
  34. Loiselle, M. and Wones, D. (1979) Characteristics and origin of anorogenic granites. Geological Society of America Abstracts with Programs, p.468.
  35. Miller, C.F., McDowell, S.M. and Mapes, R.W. (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, v.31, p.529-532. https://doi.org/10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
  36. Mushkin, A., Navon, O., Halicz, L., Hartmann, G. and Stein, M. (2003) The petrogenesis of A-type magmas from the Amram Massif, southern Israel. J. Petrol., v.44, p.815-832. https://doi.org/10.1093/petrology/44.5.815
  37. Nash, W. and Crecraft, H. (1985) Partition coefficients for trace elements in silicic magmas. Geochim. Cosmochim. Ac., v.49, p.2309-2322. https://doi.org/10.1016/0016-7037(85)90231-5
  38. Patino Douce, A.E. (1997) Generation of metaluminous Atype granites by low-pressure melting of calc-alkaline granitoids. Geology, v.25, p.743-746. https://doi.org/10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
  39. Pearce, J.A. and Stern, R.J. (2006) Origin of back-arc basin magmas: Trace element and isotope perspectives. Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions, p.63-86.
  40. Pearce, J.A., Harris, N.B. and Tindle, A.G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, v.25, p. 956-983. https://doi.org/10.1093/petrology/25.4.956
  41. Pearce, J.A., Stern, R.J., Bloomer, S.H. and Fryer, P. (2005) Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochem Geophy Geosy, p.6.
  42. Rudnick, R.L. and Taylor, S.R. (1987) The composition and petrogenesis of the lower crust: a xenolith study. Journal of Geophysical Research: Solid Earth, v.92, p.13981-14005. https://doi.org/10.1029/JB092iB13p13981
  43. Smith, J., Delaney, J., Hervig, R. and Dawson, J. (1981) Storage of F and Cl in the upper mantle: geochemical implications. Lithos, v.14, p.133-147. https://doi.org/10.1016/0024-4937(81)90050-5
  44. Sun, S.S. and McDonough, W.S. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, v.42, p.313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  45. Turner, S.P., Foden, J.D. and Morrison, R.S. (1992) Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma - an Example from the Padthaway Ridge, South Australia. Lithos, v.28, p.151-179. https://doi.org/10.1016/0024-4937(92)90029-X
  46. Watson, E.B. and Harrison, T.M. (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, v.64, p.295-304. https://doi.org/10.1016/0012-821X(83)90211-X
  47. Whalen, J.B., Currie, K.L. and Chappell, B.W. (1987) Atype granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, v.95, p.407-419. https://doi.org/10.1007/BF00402202
  48. Wu, F.Y., Sun, D.Y., Li, H., Jahn, B.M and Wilde, S. (2002) A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical Geology, v.187, p.143-173. https://doi.org/10.1016/S0009-2541(02)00018-9
  49. Yun, S.H. and Hwang, I.H. (1990) Articles: Petrology and Geochemical Characteristics of the Granitic Rocks in Gyeongju Area, Kyeongju. Journal of the Korean Earth Science Society, v.11, p.51-51. (in Korean with English abstract)
  50. Zhao, X.F., Zhou, M.F., Li, J.W. and Wu, F.Y. (2008) Association of Neoproterozoic A-and I-type granites in South China: implications for generation of A-type granites in a subduction-related environment. Chemical Geology, v.257, p.1-15. https://doi.org/10.1016/j.chemgeo.2008.07.018