References
- Agangi, A., Kamenetsky, V.S. and McPhie, J. (2010) The role of fluorine in the concentration and transport of lithophile trace elements in felsic magmas: Insights from the Gawler Range Volcanics, South Australia. Chem Geol., v.273, p.314-325. https://doi.org/10.1016/j.chemgeo.2010.03.008
- Anderson, I.C., Frost, C.D. and Frost, B.R. (2003) Petrogenesis of the Red Mountain pluton, Laramie anorthosite complex, Wyoming: implications for the origin of A-type granite. Precambrian Res., v.124, p.243-267. https://doi.org/10.1016/S0301-9268(03)00088-3
- Anderson, J.L. (1983) Proterozoic anorogenic granite plutonism of North America. Geological Society of America Memoirs., v.161, p.133-154.
- Arth, J.G. (1976) Behavior of trace elements during magmatic processes: a summary of theoretical models and their applications. J. Res. US Geol. Surv.;(United States). p.4.
- Banno, S., Sakai, C. and Higashino, T. (1986) Pressure-temperature trajectory of the Sanbagawa metamorphism deduced from garnet zoning. Lithos, v.19, p.51-63. https://doi.org/10.1016/0024-4937(86)90015-0
- Bohlen, S.R., Boettcher, A., Wall, V. and Clemens, J. (1983) Stability of phlogopite-quartz and sanidine-quartz: a model for melting in the lower crust. Contributions to Mineralogy and Petrology, v.83, p.270-277. https://doi.org/10.1007/BF00371195
- Bonin, B. (2007) A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, v.97, p.1-29. https://doi.org/10.1016/j.lithos.2006.12.007
- Bromiley, D.W. and Kohn, S.C. (2007) Comparisons between fluoride and hydroxide incorporation in nominally anhydrous and fluorine-free mantle minerals. Geochim Cosmochim Ac., v.71, p.124-124.
- Chappell, B.W. and Stephens, W.E. (1988) Origin of infracrustal (I-type) granite magmas. Earth and Environmental Science Transactions of the Royal Society of Edinburgh., v.79, p.71-86. https://doi.org/10.1017/S0263593300014139
- Charoy, B. and Raimbault, L. (1994) Zr-, Th-, and REErich biotite differentiates in the A-type granite pluton of Suzhou (Eastern China): the key role of fluorine. Journal of Petrology, v.35, p.919-962. https://doi.org/10.1093/petrology/35.4.919
- Cheong, A.C.-S. and Jo, H.J. (2017) Crustal evolution in the Gyeongsang Arc, southeastern Korea: Geochronological, geochemical and Sr-Nd-Hf isotopic constraints from granitoid rocks. American Journal of Science, v.317, p.369-410. https://doi.org/10.2475/03.2017.03
- Chough, S. and Sohn, Y. (2010) Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: new view. Earth-Science Reviews., v.101, p.225-249. https://doi.org/10.1016/j.earscirev.2010.05.004
- Clemens, J.D., Holloway, J.R., and White, A.J.R. (1986) Origin of an A-type granite: experimental constraints. American Mineralogist, v.71, p.317-324.
- Collins, W., Beams, S., White, A. and Chappell, B. (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, v.80, p.189-200. https://doi.org/10.1007/BF00374895
- Creaser, R.A., Price, R.C. and Wormald, R.J. (1991) A-type granites revisited: assessment of a residual-source model. Geology, v.19, p.163-166. https://doi.org/10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2
- Delany, J.M. and Helgeson, H.C. (1978) Calculation of the thermodynamic consequences of dehydration in subducting oceanic crust to 100 kb and> 800 degrees C. American Journal of Science, v.278, p.638-686. https://doi.org/10.2475/ajs.278.5.638
- Eby, G.N. (1990) The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, v.26, p.115-134. https://doi.org/10.1016/0024-4937(90)90043-Z
- Eby, G.N. (1992) Chemical Subdivision of the A-Type Granitoids - Petrogenetic and Tectonic Implications. Geology., v.20, p.641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
- Edgar, A.D., Pizzolato, L.A. and Sheen, J. (1996) Fluorine in igneous rocks and minerals with emphasis on ultrapotassic mafic and ultramafic magmas and their mantle source regions. Mineral Mag., v.60, p.243-257. https://doi.org/10.1180/minmag.1996.060.399.01
- Ellis, D.J. (1986) Garnet-liquid Fe (super 2+)-Mg equilibria and implications for the beginning of melting in the crust and subduction zones. American Journal of Science, v.286, p.765-791. https://doi.org/10.2475/ajs.286.10.765
- Hsu, L.C. (1968) Selected phase relationships in the system Al-Mn-Fe-Si-OH: A model for garnet equilibria. J Petrol., v.9, p.40-83. https://doi.org/10.1093/petrology/9.1.40
- Hwang, B.H., McWilliams, M., Son, M. and Yang, K. (2007) Tectonic implication of A-type granites across the Yangsan fault, Gigye and Gyeongju areas, Southeast Korean Peninsula. Int. Geol. Rev., v.49, p.1094-1102. https://doi.org/10.2747/0020-6814.49.12.1094
- Imaoka, T., Kiminami, K., Nishida, K., Takemoto, M., Ikawa, T., Itaya, T., Kagami, H. and Iizumi, S. (2011) K-Ar age and geochemistry of the SW Japan Paleogene cauldron cluster: Implications for Eocene-Oligocene thermo-tectonic reactivation. J. Asian Earth Sci., v.40, p.509-533. https://doi.org/10.1016/j.jseaes.2010.10.002
- Jiang, Y.H., Ling, H.F., Jiang, S.Y., Fan, H.H., Shen, W.Z. and Ni, P. (2005) Petrogenesis of a Late Jurassic peraluminous volcanic complex and its high-Mg, potassic, quenched enclaves at Xiangshan, southeast China. J. Petrol., v.46, p.1121-1154. https://doi.org/10.1093/petrology/egi012
- Kim, C.-S. and Kim, G.-S. (1997) Petrogenesis of the early Tertiary A-type Gyeongju alkali granite in the Kyongsang Basin, Korea. Geosciences Journal., v.1, p.99-107. https://doi.org/10.1007/BF02910481
- King, P.L., White, A.J.R., Chappell, B.W. and Allen, C.M. (1997) Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. J. Petrol., v.38, p.371-391. https://doi.org/10.1093/petroj/38.3.371
- Koh, J., Yun, S. and Lee, S. (1996) Petrology and geochemical characteristics of A-type granite with particular reference to the Gyeongju Granite, Kyeonju. Journal of the Petrological Society of Korea, v.5, p.142-160. (in Korean).
- Kohler, J., Schonenberger, J., Upton, B. and Markl, G. (2009) Halogen and trace-element chemistry in the Gardar Province, South Greenland: Subduction-related mantle metasomatism and fluid exsolution from alkalic melts. Lithos, v.113, p.731-747. https://doi.org/10.1016/j.lithos.2009.07.004
- Landenberger, B. and Collins, W. J. (1996) Derivation of A-type granites from a dehydrated charnockitic lower crust: Evidence from the Chaelundi complex, eastern Australia. J. Petrol., v.37, p.145-170. https://doi.org/10.1093/petrology/37.1.145
- Lee, M. (1995) Mineralogy and geochemistry of the granitic rocks distributed in the Kyeongju area. MS thesis, Seoul National University, Seoul.
- Lee, M.J., Lee, J.I. and Lee, M.S. (1995) Mineralogy and major element geochemistry of A-type alkali granite in the Kyeongju area, Korea. Journal of the Geological Society of Korea, v.31, p.583-607.
- Li, H., Ling, M.-X., Ding, X., Zhang, H., Li, C.-Y., Liu, D.-Y. and Sun, W.-D. (2014) The geochemical characteristics of Haiyang A-type granite complex in Shandong, eastern China. Lithos, v.200, p.142-156.
- Li, H., Ling, M.-X., Li, C.-Y., Zhang, H., Ding, X., Yang, X.-Y., Fan, W.-M., Li, Y.-L. and Sun, W.-D. (2012) A-type granite belts of two chemical subgroups in central eastern China: indication of ridge subduction. Lithos, v.150, p.26-36. https://doi.org/10.1016/j.lithos.2011.09.021
- Loiselle, M. and Wones, D. (1979) Characteristics and origin of anorogenic granites. Geological Society of America Abstracts with Programs, p.468.
- Miller, C.F., McDowell, S.M. and Mapes, R.W. (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, v.31, p.529-532. https://doi.org/10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
- Mushkin, A., Navon, O., Halicz, L., Hartmann, G. and Stein, M. (2003) The petrogenesis of A-type magmas from the Amram Massif, southern Israel. J. Petrol., v.44, p.815-832. https://doi.org/10.1093/petrology/44.5.815
- Nash, W. and Crecraft, H. (1985) Partition coefficients for trace elements in silicic magmas. Geochim. Cosmochim. Ac., v.49, p.2309-2322. https://doi.org/10.1016/0016-7037(85)90231-5
- Patino Douce, A.E. (1997) Generation of metaluminous Atype granites by low-pressure melting of calc-alkaline granitoids. Geology, v.25, p.743-746. https://doi.org/10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
- Pearce, J.A. and Stern, R.J. (2006) Origin of back-arc basin magmas: Trace element and isotope perspectives. Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions, p.63-86.
- Pearce, J.A., Harris, N.B. and Tindle, A.G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, v.25, p. 956-983. https://doi.org/10.1093/petrology/25.4.956
- Pearce, J.A., Stern, R.J., Bloomer, S.H. and Fryer, P. (2005) Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochem Geophy Geosy, p.6.
- Rudnick, R.L. and Taylor, S.R. (1987) The composition and petrogenesis of the lower crust: a xenolith study. Journal of Geophysical Research: Solid Earth, v.92, p.13981-14005. https://doi.org/10.1029/JB092iB13p13981
- Smith, J., Delaney, J., Hervig, R. and Dawson, J. (1981) Storage of F and Cl in the upper mantle: geochemical implications. Lithos, v.14, p.133-147. https://doi.org/10.1016/0024-4937(81)90050-5
- Sun, S.S. and McDonough, W.S. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, v.42, p.313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
- Turner, S.P., Foden, J.D. and Morrison, R.S. (1992) Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma - an Example from the Padthaway Ridge, South Australia. Lithos, v.28, p.151-179. https://doi.org/10.1016/0024-4937(92)90029-X
- Watson, E.B. and Harrison, T.M. (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, v.64, p.295-304. https://doi.org/10.1016/0012-821X(83)90211-X
- Whalen, J.B., Currie, K.L. and Chappell, B.W. (1987) Atype granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, v.95, p.407-419. https://doi.org/10.1007/BF00402202
- Wu, F.Y., Sun, D.Y., Li, H., Jahn, B.M and Wilde, S. (2002) A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical Geology, v.187, p.143-173. https://doi.org/10.1016/S0009-2541(02)00018-9
- Yun, S.H. and Hwang, I.H. (1990) Articles: Petrology and Geochemical Characteristics of the Granitic Rocks in Gyeongju Area, Kyeongju. Journal of the Korean Earth Science Society, v.11, p.51-51. (in Korean with English abstract)
- Zhao, X.F., Zhou, M.F., Li, J.W. and Wu, F.Y. (2008) Association of Neoproterozoic A-and I-type granites in South China: implications for generation of A-type granites in a subduction-related environment. Chemical Geology, v.257, p.1-15. https://doi.org/10.1016/j.chemgeo.2008.07.018