DOI QR코드

DOI QR Code

Rn Occurrences in Groundwater and Its Relation to Geology at Yeongdong Area, Chungbuk, Korea

충북 영동군의 복합 지질과 지하수 라돈 함량과의 연관성에 대한 고찰

  • Moon, Sang-Ho (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Cho, Soo-Young (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kim, Sunghyun (GeoGreen21)
  • 문상호 (한국지질자원연구원 지질환경연구본부 지하수연구센터) ;
  • 조수영 (한국지질자원연구원 지질환경연구본부 지하수연구센터) ;
  • 김성현 ((주)지오그린21)
  • Received : 2018.08.16
  • Accepted : 2018.10.18
  • Published : 2018.10.28

Abstract

Yeongdong area is located on the border zone between Precambrian Yeongnam massif and central southeastern Ogcheon metamorphic belt, in which Cretaceous Yeongdong sedimentary basin exists. Main geology in this area consists of Precambrian Sobaeksan gneiss complex, Mesozoic igneous and sedimentary rocks and Quaternary alluvial deposits. Above this, age-unknown Ogcheon Supergroup, Paleozoic sedimentary rocks and Tertiary granites also occur in small scale in the northwestern part. This study focuses on the link between the various geology and Rn concentrations in groundwater. For this, twenty wells in alluvial/weathered zone and sixty bedrock aquifer wells were used. Groundwater sampling campaigns were twice run at wet season in August 2015 and dry season in March 2016. Some wells placed in alluvial/weathered part of Precambrian metamorphic rocks and Jurassic granite terrains, as well as Cretaceous porphyry, showed elevated Rn concentrations in groundwater. However, detailed geology showed the distinct feature that these high-Rn groundwaters in metamorphic and granitic terrains are definitely related to proximity of aquifer rocks to Cretaceous porphyry in the study area. The deeper wells placed in bedrock aquifer showed that almost the whole groundwaters in biotite gneiss and schist of Sobaeksan gneiss complex and in Cretaceous sedimentary rocks of Yeongdong basin have low level of Rn concentrations. On the other hand, groundwaters occurring in rock types of granitic gneiss or granite gneiss among Sobaeksan gneiss complex have relatively high Rn concentrations. And also, groundwaters occurring in the border zone between Triassic Cheongsan granites and two-mica granites, and in Jurassic granites neighboring Cretaceous porphyry have relatively high Rn concentrations. Therefore, to get probable and meaningful results for the link between Rn concentrations in groundwater and surrounding geology, quite detailed geology including small-scaled dykes or vein zones should be considered. Furthermore, it is necessary to take account of the spatial proximity of well location to igneous rocks associated with some mineralization/hydrothermal alteration zone rather than in-situ geology itself.

영동지역은 지체구조상 옥천습곡대의 중앙 남동부와 영남육괴와의 경계부에 위치하며, 이들 경계부에는 백악기 영동 퇴적분지가 분포한다. 영동지역의 지질은 주로 선캠브리아시대 소백산 편마암복합체, 중생대 화강암류와 퇴적암류, 그리고 이들 암석을 부정합으로 덮은 제4기 충적층으로 이루어져 있다. 이외에도, 시대미상의 옥천누층군, 고생대의 퇴적암류, 트라이아스기의 화강암류들이 북서측에서 소규모로 산출된다. 이들 다양한 지질에서 산출되는 지하수 내 Rn 함량 특성을 검토하기 위해, 충적층/풍화대 지하수 관정 20개, 암반 지하수 관정 60개를 대상으로 2015년 8월 풍수기와 2016년 3월 갈수기 2 차례에 걸쳐 시료를 채취 분석하였다. 충적/풍화대 지하수의 Rn 함량은 백악기 반암 뿐 아니라 일부 쥬라기 화강암류와 소백산 편마암류 지역에서 높게 나타났다. 그러나, 상세 지질을 살펴보면, 쥬라기 화강암과 흑운모 편마암 자체보다는 인근의 백악기 반암과의 경계부 혹은 반암 인근의 관정 지하수에서 Rn 함량이 높게 나타나는 경향을 볼 수 있다. 암반 지하수에서의 상세 지질별로 Rn 함량 산출 특성을 살펴보면, 영동분지 내 백악기 퇴적암과 소백산 편마암복합체 중 흑운모 편마암과 편암 지역에서 Rn 함량이 적은 편이었고, 백악기 반암 자체, 트라이아스기 청산화강암과 복운모화강암의 경계부위, 쥬라기 화강암과 반암 경계부, 편마암 복합체 중 화강암질 편마암 혹은 화강편마암 지역에서 Rn 함량이 상대적으로 높게 검출되는 것들이 나타났다. 지하수 내 Rn 함량과 지질과의 연관성을 검토할 때, 개략적이고 큰 규모의 지질보다는 맥상 규모로 작은 규모와 이에 따른 정밀한 지질 상황을 고려할 때 지질 및 암종에 따른 Rn 함량의 변화 및 관련성을 의미있게 논의할 수 있을 것으로 판단된다. 또한, 지하수 관정이 위치한 지점에서의 지질 자체보다는 인근에 소규모로 산출되는 맥암, 페그마타이트, 석영맥 등의 산출 및 이들과 관련된 광화대/변질대 등 특수한 지질 상황을 고려한 지하수 수질 특성을 검토할 필요가 있다.

Keywords

References

  1. Banks, D., Frengstad, B., Midtgard, A.K., Krog, J.R. and Strand, T. (1998) The chemistry of Norwegian groundwater: I. The distribution of radon, major and minor elements in 1604 crystalline bedrock groundwaters. Science of the Total environment, v.222, no.1, p.71-91. https://doi.org/10.1016/S0048-9697(98)00291-5
  2. Betcher, R.N., Gascoyne, M. and Brown, D. (1988) Uranium in groundwaters of southeastern Manitoba, Canada. Canadian Journal of Earth Sciences, v.25, no.12, p.2089-2103. https://doi.org/10.1139/e88-193
  3. Cheong, C.-S. and Chang, H.-W. (1996) Tectono-magmatism, -metamorphism, and -mineralization of the central Ogcheon belt, Korea (I): Sr, Nd and Pb isotopic systematics and geochemistry of granitic rocks in the Boeun area. Jour. Geol. Soc. Korea, v.32, no.1, p.91-116.
  4. Cho, B.W., Sung, I.H., Cho, S.Y. and Park, S.K. (2007) A preliminary investigation of radon concentrations in groundwater of South Korea. Korea Jour. Soil and Groundwater Environ., v.12, no.5, p.98-104.
  5. Cho, B.W., Kim, M.S., Kim, T.S., Han, J.S., Yun, U., Lee, B.D., Hwang, J.H. and Choo, C.O. (2012) Hydrochemistry and distribution of uranium and radon in groundwater of the Nonsan area. Jour. Eng. Geol., v.22, no.4, p.427-437. https://doi.org/10.9720/kseg.2012.4.427
  6. Cho, B.W., Kim, M.S., Kim, T.S., Yun, U., Lee, B.D., Hwang, J.H. and Choo, C.O. (2013) Characteristics of occurrence and distribution of natural radioactive materials, uranium and radon in groundwater of the Danyang area. Jour. Eng. Geol., v.23, no.4, p.477-491. https://doi.org/10.9720/kseg.2013.4.477
  7. Choo, C.O. (2002) Characteristics of uraniferous minerals in Daebo granite and significance of mineral species. Journal of Mineralogical Society of Korea. v.15, no.1, p.11-21.
  8. Cothern, C.R. (1990) Radon, radium and uranium in drinking water. CRC Press, 269p.
  9. Han, J.H. and Park, K.H. (1996) Abundances of uranium and radon in groundwater of Taejeon area. Econ. Environ. Geol., v.29, no.5, p.589-595.
  10. Hong, S.H., Lee, B.J. and Kim, W.Y. (1980) Explanatory text of the geological map of Muju sheet (1:50,000). Korea Research Institute of Geoscience and Mineral Resources, 28p.
  11. http://mgeo.kigam.re.kr (2017) 2017-04-11. 1/50,000 geological map.
  12. Hwang, J.H., Kim, D.H., Cho, D.R. and Song, G.Y. (1996) 1:250,000 Explanatory note of the Andong Sheet. Korea Institute of Geology, Mining and Materials, 67p.
  13. Hwang, J., Moon, S.H., Ripley, E.M. and Kim, Y.H. (2014) Determining uraniferous host rocks and minerals as a source of dissolved uranium in granite aquifers near the central Ogcheon metamorphic belt, Korea. Environ. Earth Sci., v.72, p.4035-4046. https://doi.org/10.1007/s12665-014-3293-7
  14. Jeong, C.H., Kim, M.S., Lee, Y.J., Han, J.H., Jang, H.G. and Jo, B.U. (2011) Hydrochemistry and occurrence of natural radioactive materials within borehole groundwater in the Cheongwon area, Jour. Eng. Geol., v.21, no.2, p.163-178. https://doi.org/10.9720/kseg.2011.21.2.163
  15. Jeong, C.H., Kim, D.W., Kim, M.S., Lee, Y.J., Kim, T.S., Han, J.S. and Jo, B.U. (2012) Occurrence of natural radioactive materials in borehole groundwater and rock core in the Icheon area, Jour. Eng. Geol., v.22, no.1, p.95-111. https://doi.org/10.9720/kseg.2012.22.1.095
  16. Jeong, C.H., Ryu, K.S., Kim, M.S., Kim, T.S., Han, J.S. and Jo, B.U. (2013) Geochemical occurrence of uranium and radon-222 in groundwater at test borehole site in the Daejeon area, Jour. Eng. Geol., v.23, no.2, p.171-186. https://doi.org/10.9720/kseg.2013.2.171
  17. Jeong, C.H., Yang, J.H., Lee, Y.J., Lee, Y.C., Choi, H.Y., Kim, M.S., Kim, H.K., Kim,T.S. and Jo, B.U. (2015) Occurrences of uranium and radon-222 from groundwaters in various geological environment in the Hoengseong area. Jour. Eng. Geol., v.25, no.4, p.557-576. https://doi.org/10.9720/kseg.2015.4.557
  18. Jeong, C.H., Yang, J.H., Lee, Y.C., Lee, Y.J., Choi, H.Y., Kim, M.S., Kim, H.K., Kim, T.S. and Jo, B.U. (2016) Occurrence characteristics of uranium and radon-222 in groundwater at OO village, Yongin area. Jour. Eng. Geol., v.26, no.2, p.261-276. https://doi.org/10.9720/kseg.2016.2.261
  19. Ju, B.K., Kim, M.S., Jeong, D.H., Hong, J.K., Kim, D.S., Noh, D.J., Yoon, J.K. and Kim, T.S. (2013) Environment characteristics of naturally occurring radioactive materials ($^{238}U$, $^{222}Rn$) concentration in drinking groundwaters of metamorphic rock areas, Korea. Jour. Soil and Groundwater Environ. v.18, no.3, p.82-92. https://doi.org/10.7857/JSGE.2013.18.3.082
  20. Kang, J.-H. (2015) The microstructural change during the mylonitization of Cheongsan granite, Korea. Jour. Petrol. Soc. Korea, v.24, no.2, p.125-139. https://doi.org/10.7854/JPSK.2015.24.2.125
  21. Kim, D.H., Chang, T.W., Kim, W.Y. and Hwang, J.H. (1978) Explanatory text of the geological map of Ogcheon sheet (Sheet 6722 IV, 1:50,000). Korea Research Institute of Geoscience and Mineral Resources, 21p.
  22. Kim, K.B. and Hwang, J.H. (1986) Geological report of the Yongdong sheet (1:50,000). Korea Institute of Energy and Resources, 24p.
  23. Kim, S.W., Yang, S.Y. and Lee, Y.J. (1989) Geological report of the Kimcheon sheet. Korea Institute of Energy and Resources, 22p.
  24. Lee, B.J., Kim, D.H., Choi, H.I., Kee, W.S. and Park, K.H. (1996) 1;250,000 Explanatory note of the Daejeon Sheet. Korea Institute of Geology, Mining and Materials, 59p.
  25. Lee, D.S., You, H.S., Woo, Y.K. and Kim, Y.J. (1989) Geological report of the Oksandong sheet. Korea Institute of Energy and Resources, 24p.
  26. Lowry, J.D., Hoxie, D.C. and Moreau, E. (1987) "Extreme levels of 222 Rn and U in a private water supply" Radon, uranium, and other radioactivity in ground water: Hydrogeologic impact and application to indoor airborne contamination. Lewis Publisher, Chelsea, MI, p.363-376.
  27. MOLITA (Ministry of Land, Infrastructure and Transport) and KIGAM (Korea Institute of Geoscience and Mineral Resources) (2014) Basic Research of Groundwater in the Okcheon district.
  28. MOLITA (Ministry of Land, Infrastructure and Transport) and KIGAM (Korea Institute of Geoscience and Mineral Resources) (2016) Basic Research of Groundwater in the Yeongdong district.
  29. Moon, S.H., Hwang, J., Lee, J.Y., Hyun, S.P., Bae, B.K. and Park, Y. (2013) Establishing the origin of elevated uranium concentrations in groundwater near the central Ogcheon metamorphic belt, Korea. Jour. Environ. Qual., v.42, p.118-128. https://doi.org/10.2134/jeq2012.0044
  30. Moon, S.H. (2017) Hydrogeochemistry of groundwater occurring in complex geological environment of Yeongdong area, Chungbuk, Korea. Econ. Environ. Geol., v.50, no.6, p.445-466. https://doi.org/10.9719/EEG.2017.50.6.445
  31. NIER (National Institute of Environmental Research (1999) Study on the radionuclides concentrations in groundwater (I), Report, 338p.
  32. NIER (National Institute of Environmental Research (2000) Study on the radionuclides concentrations in groundwater (II), Report, 323p.
  33. NIER (National Institute of Environmental Research (2001) Study on the radionuclides concentrations in groundwater (III), Report, 388p.
  34. NIER (National Institute of Environmental Research (2002) Study on the radionuclides concentrations in groundwater (IV), Report, 357p.
  35. NIER (National Institute of Environmental Research (2008) An investigation of natural radionuclide levels in groundwater (I), Report, 293p.
  36. Ree, J.H., Kwon, S.-H., Park, Y., Kwon, S.-T. and Park, S.-H. (2001) Pretectonic and posttectonic emplacements of the granitoids in the south central Okcheon belt, South Korea: Implications for the timing of strike-slip shearing and thrusting. Tectonics, v.20, p.850-867. https://doi.org/10.1029/2000TC001267
  37. USEPA (United States Environmental Protection Agency) (2009) National primary drinking water regulations.
  38. Wathern, J.B. (1987) The effect of uranium siting in twomica granites on uranium concentrations and radon activity in ground water. Radon, radium, and other radioactivity in groundwater, Proceedings of the NWWA Conference.
  39. WHO (World Health Organization) (2011) Guidelines for drinking water quality. Chapter 9. Radiological aspects, 4th edition. World Health Organization, Geneva.
  40. Youn, S.-T. and Park, H.-I. (1991) Gold and silver mineralization in the Yonghwa mine. Jour. Korean Inst. Mining Geol. (now Econ. Environ. Geol.), v.24, no.2, p.107-129.
  41. Yun, S.K. and Park, B.K. (1968) Explanatory text of the geological map of Seolcheon sheet (Sheet 6722 II, 1:50,000). Geological Survey of Korea, 15p.