• 제목/요약/키워드: Yeongdong area

검색결과 85건 처리시간 0.023초

영동지역어내의 충청방언 남동부 하한선 연구 (Research on the Bottom Boundary Line on the Southeast Area of the Chungcheongdo Dialect in Yeongdong)

  • 성희제
    • 인문언어
    • /
    • 제8집
    • /
    • pp.265-289
    • /
    • 2006
  • The geographical characteristics of Yeongdong(永同) the southernmost part of the Chungcheongbukdo province, has attracted attention among the academic circle as one of the dialectal contact regions since it adjoins the Gyeongsang and Jeolla dialects. Unlike the local language in Mooju (Jellado dialect) adjacent to the Southwest part, the local language in Yeongdong is quite different from that of Kimcheon (Gyeongsang dialect). More specifically, it is noteworthy that the boundary line of the Gyeongsang dialect is found in this region, which is different from the administrative division. In other words, the local language in Yeongdong is divided into the Chungcheong dialect and the Gyeongsang dialect, and furthermore each dialect region still has the characteristics of the other region's dialect. For example, the phonological structure of Yeongdong Chungcheongdo dialect has very unique characteristics of the fudged dialect, which is seemingly influenced by the Gyeongsang dialect. The present study is to define the bottom boundary line of the southeast area of the Chungcheong dialect by identifying the boundary line between the Gyeongsang dialect and the Chungcheong dialect, and to clarify its specific sound system generated by the contact of these two dialects. For this, the author collected and analyzed data of the local language around Yeongdong and adjacent areas. It was found that Cheongwha-ri, Deokjin-ri, and Sanjeo-ri at Yeongsan-myeon, and Mugeunjeom, Sangga-ri, and Jungga-ri at Yeongdong-eup, among the regions that belongs to Chungcheong dialect within the local language of Yeongdong, show the characteristics of the Gyeongsang dialect. Accordingly, the western areas of these villages become the southeast boundary line of the Chungcheong dialect. Also, the unique phonological characteristics of the Yeongdong Chungcheong dialect is affected by the Gyeongsang dialect, among which "rhythms, y deletion, nasal phoneme deletion, and w deletion" appeared. It is thought to be the unique fudged dialectal phenomenon that appeared only in this region. The research result is expected to be of some help in finding out various aspects of dialectal contacts as well as clarifying the phonological features of the local language in Yeongdong, and thereby contributing to exact divisioning of the Chungcheong dialect.

  • PDF

영동지역 겨울철 강수와 연관된 산악효과와 해양효과 (Orographic and Ocean Effects Associated with a Heavy Snowfall Event over Yeongdong Region)

  • 조구희;권태영
    • 대기
    • /
    • 제22권1호
    • /
    • pp.57-71
    • /
    • 2012
  • Influences of orographic and ocean effect, which depend on the detailed geographic characteristics, upon winter time (December-February) precipitation in the Yeongdong region are investigated. Most of precipitation events in the Yeongdong region during the wintertime are associated with moist northeasterly (coming from the northeast direction) winds and also the spatial distribution of precipitation shows a great difference between Mountain area (Daegwallyeong) and Coastal area (Gangneung). The linear correlation coefficient between the meteorological variables obtained from NCEP/NCAR Reanalysis Data and precipitation amount for each precipitation type is calculated. Mountain type precipitation is dominated by northeasterly wind speed of the low level (1000 hPa and 925 hPa) and characterized with more precipitation in mountain area than coastal area. However, Coastal type precipitation is affected by temperature difference between ocean and atmosphere, and characterized with more precipitation in coastal area than mountain area. The results are summarized as follows; In the case of mountain type precipitation, the correlation coefficient between wind speed at 1000 hPa (925 hPa) and precipitation amount at Daegwallyeong is 0.60 (0.61). The correlation is statistical significant at 1% level. In the case of coastal type precipitation, the correlation coefficient of temperature difference between ocean and 925 hPa (850 hPa) over the East sea area and precipitation amount at Gangneung is 0.33 (0.34). As for the mountain type precipitation, a detailed analysis was conducted in order to verify the relationship between precipitation amount at Daegwallyeong and low level wind speed data from wind profiler in Gangneung and Buoy in the East Sea. The results also show the similar behavior. This result indicates that mountain type precipitation in the Yeongdong region is closely related with easterly wind speed. Thus, the statistical analysis of the few selected meteorological variables can be a good indicator to estimate the precipitation totals in the Yeongdong region in winter time.

북동 기류와 관련된 영동해안 지역의 대설 사례에 대한 WRF수치모의 연구 (A Numerical Simulation Study Using WRF of a Heavy Snowfall Event in the Yeongdong Coastal Area in Relation to the Northeasterly)

  • 이재규;김유진
    • 대기
    • /
    • 제18권4호
    • /
    • pp.339-354
    • /
    • 2008
  • A numerical simulation of a heavy snowfall event that occurred 13 January 2008 along the Yeongdong coastal area, was performed using WRF (Weather Research and Forecasting) in order to reveal mesoscale structures and to construct a conceptual model showing the meteorological background that caused the large difference in snowfall amounts between the Yeongdong mountain area and the Yeongdong coastal area. The simulation results matched well with various observations such as corresponding 12h-accumulated observed precipitation, surface wind obscrvation, radar echoes, and satellite infrared images. The simulation and the observations showed that the scale of the event was of meso - $\beta$ and meso - $\gamma$ scale. The simulation represented well the mesoscale process causing the large difference in snowfall amounts in the two areas. First, wind flow was kept, to a certain extent, from crossing the mountains due to the blocking effect of the low Froude number (~1). The northeast flow over the adjaccnt sea tumcd northwest as it approachcd the mountains, where it was trapped, allowing so-called cold air damming. Second, a strong convergence area formed where the cold northwest flow along the Yeongdong coastal area and the relatively warm and moist northeast flow advecting toward the coast met, supporting the fonllation of a coastal front. Thus, the vertical motion was strongest over the front located near the coast, leading to the heavy snowfall there rather than in the remote mountain area.

2017년 1월 20일 발생한 강원 영동대설 사례에 대한 대기의 구조적 특성 연구 (A Study on the Synoptic Structural Characteristics of Heavy Snowfall Event in Yeongdong Area that Occurred on 20 January, 2017)

  • 안보영;이정선;김백조;김희원
    • 한국환경과학회지
    • /
    • 제28권9호
    • /
    • pp.765-784
    • /
    • 2019
  • The synoptic structural characteristics associated with heavy snowfall (Bukgangneung: 31.3 cm) that occurred in the Yeongdong area on 20 January 2017 was investigated using surface and upper-level weather charts, European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data, radiosonde data, and Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product. The cold dome and warm trough of approximately 500 hPa appeared with tropopause folding. As a result, cold and dry air penetrated into the middle and upper levels. At this time, the enhanced cyclonic potential vorticity caused strong baroclinicity, resulting in the sudden development of low pressure at the surface. Under the synoptic structure, localized heavy snowfall occurred in the Yeongdong area within a short time. These results can be confirmed from the vertical analysis of radiosonde data and the characteristics of the MODIS cloud product.

태백산맥이 영동지역의 강설량 분포에 미치는 영향에 관한 수치 모의 사례 연구 (A Numerical Case Study Examining the Orographic Effect of the Taebaek Mountains on Snowfall Distribution over the Yeongdong Area)

  • 이재규;김유진
    • 대기
    • /
    • 제18권4호
    • /
    • pp.367-386
    • /
    • 2008
  • The Weather Research and Forecasting (WRF) model was designed to identify the role of the Taebaek Mountains in the occurrence of heavy snowfall in Yeongdong area with a strong northeast wind on January 20-21, 2008. To this end, in addition to the control simulation with the realistic distribution of the Taebaek Mountains, a sensitivity experiment that removed the orography over the Taebaek Mountains was performed. The control simulation results showed that the resulting wind field and precipitation distribution were similar to what were observed. Results from the sensitivity experiment clearly demonstrates the presence of orographic lifting on the windward slope of the mountains. It is concluded that the altitude of the Taebaek Mountains is the main controlling factor in determining the distribution and amount of precipitation in the Yeongdong area for the case of heavy snowfall in January 2008.

2020 강원영동 강풍 관측에서 지상 바람의 공간 변동성 분석 (Analysis of Spatial Variability of Surface Wind during the Gangwon Yeongdong Wind Experiments (G-WEX) in 2020)

  • 김유정;권태영
    • 대기
    • /
    • 제31권4호
    • /
    • pp.377-394
    • /
    • 2021
  • The recent largest forest fire in the Yeongdong region, Goseung/Okgae fires of 2019 occurred during YangGang wind event. The wind can be locally gusty and extremely dry, particularly in the complex terrain of Yeongdong. These winds can cause and/or rapidly spread wildfires, the threat of which is serious during the dry spring season. This study examines the spatial variability of the surface wind and its coupling with the upper atmospheric wind using the data during the IOP of the Gangwon Yeongdong Wind Experiments (G-WEX) conducted in 2020 and the data during YangGang wind event on 4~5 April 2019. In the case of IOPs, strong wind at the surface with a constant wind direction appears in the mountain area, and weak wind with large variability in wind direction appears from foothill to the coast in the vicinity of Gangneung region. However, in the 2019 event, strong wind at the surface with a constant wind direction appears in the entire region from the mountain to the coast, even with the stronger wind in the coast than in some part of the mountain area. The characteristics of the upper atmospheric wind related with the spatial distribution of surface wind show that during IOPs of G-WEX, a strong downdraft exists near the mountaintop in the level of about 1 to 4 km. However, in the 2019 event a strong downdraft is reinforced, when its location moves toward the coast and descends close to the ground. These downdrafts are generated by the breaking of mountain waves.

한국 남동해안 감포 연대산 지역 해안단구 상고위면과 고고위면 지형발달 (The Geomorphological Development of Marine Terraces UHS (upper higher surface) and HHS (high higher surface) around Yeondae-san, Gampo-Eup, Southeastern Coast of Korea)

  • 황상일;윤순옥
    • 한국지형학회지
    • /
    • 제27권4호
    • /
    • pp.13-28
    • /
    • 2020
  • In this study, the distribution and topographic development of marine terraces, UHS (Upper Higher Surface) and HHS (High Higher Surface) at Yeondae-san area, Gampo-eup were discussed. We critically examined on the substance of the Yeongdong-myeon (a low-lying erosion surface) in the east coast of Korea. In study area, UHS including UHS-246m, UHS-241m, UHS-235m, UHS-220m, UHS-210m and UHS-220 is found on the highest altitude among the marine terraces in Korea. The existence of UHS requires new interpretation on topographical surface like Yeongdong-myeon, which has been commonly accepted as a theory in the society of Korean Geography. Since UHS is distributed continuously ascending on the altitude of HHS, the period of formation should be understood in the same context. And UHS of paleo-shoreline 246m has been estimated to be formed about 1.5 million years ago.

Subsurface Structure of the Yeongdong Basin by Analyzing Aeromagnetic and Gravity Data

  • Kim, Kyung-Jin;Kwon, Byung-Doo
    • 한국지구과학회지
    • /
    • 제23권1호
    • /
    • pp.87-96
    • /
    • 2002
  • Aeromagnetic and gravity data were analyzed to delineate the subsurface structure of the Yeongdong basin and its related fault movement in the Okcheon fold belt. The aeromagnetic data of the total intensity (KIGAM, 1983) were reduced to the pole and three dimensional inverse modeling, which considers topography of the survey area in the modeling process, were carried out. The apparent susceptibility map obtained by three dimensional magnetic inversion, as well as the observed aeromagnetic anomaly itself, show clearly the gross structural trend of the Yeongdong basin in the direction on between $N30^{\circ}E$ and $N45^{\circ}E$. Gravity survey was carried out along the profile, of which the length is about 18.2 km across the basin. Maximum relative Bouguer anomaly is about 7 mgals. Both forward and inverse modeling were also carried out for gravity analysis. The magnetic and gravity results show that the Yeongdong basin is developed by the force which had created the NE-SW trending the magnetic anomalies. The susceptibility contrast around Yeongdong fault is apparent, and the southeastern boundary of the basin is clearly defined. The basement depth of the basin appears to be about 1.1 km beneath the sea level, and the width of the basin is estimated to be 7 km based on the simultaneous analysis of gravity and magnetic profiles. There exists an unconformity between the sedimentary rocks and the gneiss at the southeastern boundary, which is the Yeongdong fault, and granodiorite is intruded at the northwestern boundary of the basin. Our results of gravity and magnetic data analysis support that the Yeongdong basin is a pull-apart basin formed by the left-stepping sinistral strike-slip fault, which formed the Okcheon fold belt.

2020년 2월 8일 영동지역 강설 사례 시 관측과 수치모의 된 바람 분석 (An Analysis of Observed and Simulated Wind in the Snowfall Event in Yeongdong Region on 8 February 2020)

  • 김해민;남형구;김백조;지준범
    • 대기
    • /
    • 제31권4호
    • /
    • pp.433-443
    • /
    • 2021
  • The wind speed and wind direction in Yeongdong are one of the crucial meteorological factors for forecasting snowfall in this area. To improve the snowfall forecast in Yeongdong region, Yeongdong Extreme Snowfall-Windstorm Experiment, YES-WEX was designed. We examined the wind field variation simulated with Local Data Assimilation and Prediction System (LDAPS) using observed wind field during YES-WEX period. The simulated wind speed was overestimated over the East Sea and especially 2 to 4 times in the coastal line. The vertical wind in Yeongdong region, which is a crucial factor in the snowfall forecast, was not well simulated at the low level (850 hPa~1000 hPa) until 12 hours before the forecast. The snowfall distribution was also not accurately simulated. Three hours after the snowfall on the East Sea coast was observed, the snowfall was simulated. To improve the forecast accuracy of snowfall in Yeongdong region, it is important to understand the weather conditions using the observed and simulated data. In the future, data in the northern part of the East Sea and the mountain slope of Taebaek observed from the meteorological aircraft, ship, and drone would help in understanding the snowfall phenomenon and improving forecasts.

영동 지역 해풍 사례를 대상으로 수행한 지면 피복 자료에 따른 WRF 모델의 민감도 분석 (WRF Sensitivity Experiments on the Choice of Land Cover Data for an Event of Sea Breeze Over the Yeongdong Region)

  • 하원실;이재규
    • 대기
    • /
    • 제21권4호
    • /
    • pp.373-389
    • /
    • 2011
  • This research focuses on the sensitivity of the WRF(Weather Research and Forecasting) Model according to three different land cover data(USGS(United States Geological Survey), MODIS(Moderate Resolution Imaging Spectroradiometer)30s+USGS, and KLC (Korea Land Cover)) for an event of sea breeze, occurred over the Gangwon Yeongdong region on 13 May 2009. Based on the observation, the easterly into Gangneung, due to the sea-breeze circulation, was identified between 1000 LST and 1640 LST. It did not reach beyond the Taebaek Mountain Range and thus the easterly was not observed near Daegwallyeong. On the other hand, the numerical simulations utilizing land cover data of USGS, MODIS30s+USGS, and KLC showed easterlies beyond the Taebaek Mountain Range up to Daegwallyeong. In addition, rather different penetration distances of each easterly, and different timings of beginning and ending of sea breeze were identified among the simulations. The Bias, MAE(Mean Absolute Error) and RMSE(Root Mean Square Error) of the wind from WRF simulation using MODIS30s+USGS land cover data were the least among the simulations particularly over Gangwon Yeongdong coastal area(Sokcho, Gangneung and Donghae), while those of the wind over the Gangwon Mountain area(Daegwallyeong and Jinbu) from the simulation using KLC land cover data were the least among them. The wind field over Gangwon Yeongdong coastal area from the simulation using USGS land cover data was rather poor among them.