DOI QR코드

DOI QR Code

Effect of Sphingosine-1-Phosphate on Intracellular Free Ca2+ in Cat Esophageal Smooth Muscle Cells

  • Lee, Dong Kyu (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Min, Young Sil (Department of Pharmaceutical Engineering, College of Convergence Science and Technology, Jung Won University) ;
  • Yoo, Seong Su (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Shim, Hyun Sub (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Park, Sun Young (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Sohn, Uy Dong (Department of Pharmacology, College of Pharmacy, Chung-Ang University)
  • Received : 2018.03.22
  • Accepted : 2018.05.08
  • Published : 2018.11.01

Abstract

A comprehensive collection of proteins senses local changes in intracellular $Ca^{2+}$ concentrations ($[Ca^{2+}]_i$) and transduces these signals into responses to agonists. In the present study, we examined the effect of sphingosine-1-phosphate (S1P) on modulation of intracellular $Ca^{2+}$ concentrations in cat esophageal smooth muscle cells. To measure $[Ca^{2+}]_i$ levels in cat esophageal smooth muscle cells, we used a fluorescence microscopy with the Fura-2 loading method. S1P produced a concentration-dependent increase in $[Ca^{2+}]_i$ in the cells. Pretreatment with EGTA, an extracellular $Ca^{2+}$ chelator, decreased the S1P-induced increase in $[Ca^{2+}]_i$, and an L-type $Ca^{2+}$-channel blocker, nimodipine, decreased the effect of S1P. This indicates that $Ca^{2+}$ influx may be required for muscle contraction by S1P. When stimulated with thapsigargin, an intracellular calcium chelator, or 2-Aminoethoxydiphenyl borate (2-APB), an $InsP_3$ receptor blocker, the S1P-evoked increase in $[Ca^{2+}]_i$ was significantly decreased. Treatment with pertussis toxin (PTX), an inhibitor of $G_i$-protein, suppressed the increase in $[Ca^{2+}]_i$ evoked by S1P. These results suggest that the S1P-induced increase in $[Ca^{2+}]_i$ in cat esophageal smooth muscle cells occurs upon the activation of phospholipase C and subsequent release of $Ca^{2+}$ from the $InsP_3$-sensitive $Ca^{2+}$ pool in the sarcoplasmic reticulum. These results suggest that S1P utilized extracellular $Ca^{2+}$ via the L type $Ca^{2+}$ channel, which was dependent on activation of the $S1P_4$ receptor coupled to PTX-sensitive $G_i$ protein, via phospholipase C-mediated $Ca^{2+}$ release from the $InsP_3$-sensitive $Ca^{2+}$ pool in cat esophageal smooth muscle cells.

Keywords

References

  1. Adamson, R. H., Sarai, R. K., Clark, J. F., Altangerel, A., Thirkill, T. L. and Curry, F. E. (2012) Attenuation by sphingosine-1-phosphate of rat microvessel acute permeability response to bradykinin is rapidly reversible. Am. J. Physiol. Heart Circ. Physiol. 302, H1929-H1935. https://doi.org/10.1152/ajpheart.00614.2011
  2. Ahmed, D., de Verdier, P. J., Ryk, C., Lunqe, O., Stal, P. and Flygare, J. (2015) FTY720 (Fingolimod) sensitizes hepatocellular carcinoma cells to sorafenib-mediated cytotoxicity. Pharmacol. Res. Perspect. 3, e00171. https://doi.org/10.1002/prp2.171
  3. Aoyama, Y., Sobue, S., Mizutani, N., Inoue, C., Kawamoto, Y., Nishizawa, Y., Ichihara, M., Kyogashima, M., Suzuki, M., Nozawa, Y. and Murate, T. (2017) Modulation of the sphingolipid rheostat is involved in paclitaxel resistance of the human prostate cancer cell line PC3-PR. Biochem. Biophys. Res. Commun. 486, 551-557. https://doi.org/10.1016/j.bbrc.2017.03.084
  4. Archbold, J. K., Martin, J. L. and Sweet, M. J. (2014) Towards selective lysophospholipid GPCR modulators. Trends Pharmacol. Sci. 35, 219-226. https://doi.org/10.1016/j.tips.2014.03.004
  5. Badawy, S. M. M., Okada, T., Kajimoto, T., Ijuin, T. and Nakamura, S. I. (2017) DHHC5-mediated palmitoylation of S1P receptor subtype 1 determines G-protein coupling. Sci. Rep. 7, 16552. https://doi.org/10.1038/s41598-017-16457-4
  6. Bates, R. C., Fees, C. P., Holland, W. L., Winger, C. C., Batbayar, K., Ancar, R., Bergren, T., Petcoff, D. and Stith, B. J. (2014) Activation of Src and release of intracellular calcium by phosphatidic acid during Xenopus laevis fertilization. Dev. Biol. 386, 165-180. https://doi.org/10.1016/j.ydbio.2013.11.006
  7. Becker, S., Kinny-Koster, B., Bartels, M., Scholz, M., Seehofer, D., Berg, T., Engelmann, C., Thiery, J., Ceglarek, U. and Kaiser, T. (2017) Low sphingosine-1-phosphate plasma levels are predictive for increased mortality in patients with liver cirrhosis. PLoS ONE 12, e0174424. https://doi.org/10.1371/journal.pone.0174424
  8. Biancani, P., Hillemeier, C., Bitar, K. N. and Makhlouf, G. M. (1987) Contraction mediated by Ca2+ influx in esophageal muscle and by Ca2+ release in the LES. Am. J. Physiol. 253, G760-G766.
  9. Candalija, A., Cubi, R., Ortega, A., Aguilera, J. and Gil, C. (2014) Trk receptors need neutral sphingomyelinase activity to promote cell viability. FEBS Lett. 588, 167-174. https://doi.org/10.1016/j.febslet.2013.11.032
  10. Choi, S. K., Ahn, D. S. and Lee, Y. H. (2009) Comparison of contractile mechanisms of sphingosylphosphorylcholine and sphingosine-1-phosphate in rabbit coronary artery. Cardiovasc. Res. 82, 324-332.
  11. Cui, K., Ruan, Y., Wang, T., Rao, K., Chen, Z., Wang, S. and Liu, J. (2017) FTY720 supplementation partially improves erectile dysfunction in rats with streptozotocin-induced type 1 diabetes through inhibition of endothelial dysfunction and corporal fibrosis. J. Sex. Med. 14, 323-335. https://doi.org/10.1016/j.jsxm.2017.01.006
  12. Delgado, A. and Martinez-Cartro, M. (2016) Therapeutic potential of the modulation of sphingosine-1-phosphate receptors. Curr. Med. Chem. 23, 242-264. https://doi.org/10.2174/0929867323666151207111509
  13. Dyckman, A. J. (2017) Modulators of sphingosine-1-phosphate pathway biology: recent advances of Sphingosine-1-phosphate Receptor 1 (S1P1) agonists and future perspectives. J. Med. Chem. 60, 5267-5289. https://doi.org/10.1021/acs.jmedchem.6b01575
  14. Feuerborn, R., Becker, S., Poti, F., Nagel, P., Brodde, M., Schmidt, H., Christoffersen, C., Ceglarek, U., Burkhardt, R. and Nofer, J.R. (2017) High density lipoprotein (HDL)-associated sphingosine 1-phosphate (S1P) inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression. Atherosclerosis 257, 29-37. https://doi.org/10.1016/j.atherosclerosis.2016.12.009
  15. Filipenko, I., Schwalm, S., Reali, L., Pfeilschifter, J., Fabbro, D., Huwiler, A. and Zangemeister-Wittke, U. (2016) Upregulation of the S1P3 receptor in metastatic breast cancer cells increases migration and invasion by induction of PGE2 and EP2/EP4 activation. Biochim. Biophys. Acta 1861, 1840-1851. https://doi.org/10.1016/j.bbalip.2016.09.005
  16. Fuhrmann, I. K., Steinhagen, J., Ruther, W. and Schumacher, U. (2015) Comparative immunohistochemical evaluation of the zonal distribution of extracellular matrix and inflammation markers in human meniscus in osteoarthritis and rheumatoid arthritis. Acta Histochem. 117, 243-254. https://doi.org/10.1016/j.acthis.2014.12.009
  17. Germinario, E., Bondi, M., Cencetti, F., Donati, C., Nocella, M., Colombini, B., Betto, R., Bruni, P., Bagni, M. A. and Danieli-Betto, D. (2016) S1P3 receptor influences key physiological properties of fast-twitch extensor digitorum longus muscle. J. Appl. Physiol. 120, 1288-1300. https://doi.org/10.1152/japplphysiol.00345.2015
  18. Gomez-Munoz, A., Gangoiti, P., Granado, M. H., Arana, L. and Ouro, A. (2010) Ceramide-1-phosphate in cell survival and inflammatory signaling. Adv. Exp. Med. Biol. 688, 118-130.
  19. Hohenhaus, D. M., Schaale, K., Le Cao, K. A., Seow, V., Iyer, A., Fairlie, D. P. and Sweet, M. J. (2013) An mRNA atlas of G protein-coupled receptor expression during primary human monocyte/macrophage differentiation and lipopolysaccharide-mediated activation identifies targetable candidate regulators of inflammation. Immunobiology 218, 1345-1353. https://doi.org/10.1016/j.imbio.2013.07.001
  20. Kanemura, N., Shibata, R., Ohashi, K., Ogawa, H., Hiramatsu-Ito, M., Enomoto, T., Yuasa, D., Ito, M., Hayakawa, S., Otaka, N., Murohara, T. and Ouchi, N. (2017) C1q/TNF-related protein 1 prevents neointimal formation after arterial injury. Atherosclerosis 257, 138-145. https://doi.org/10.1016/j.atherosclerosis.2017.01.014
  21. Li, N. and Zhang, F. (2016) Implication of sphingosin-1-phosphate in cardiovascular regulation. Front. Biosci. (Landmark Ed.) 21, 1296-1313. https://doi.org/10.2741/4458
  22. Li, Q., Chen, B., Zeng, C., Fan, A., Yuan, Y., Guo, X., Huang, X. and Huang, Q. (2015) Differential activation of receptors and signal pathways upon stimulation by different doses of sphingosine-1-phosphate in endothelial cells. Exp. Physiol. 100, 95-107. https://doi.org/10.1113/expphysiol.2014.082149
  23. Li, S., Chen, J., Fang, X. and Xia, X. (2017) Sphingosine-1-phosphate activates the AKT pathway to inhibit chemotherapy induced human granulosa cell apoptosis. Gynecol. Endocrinol. 33, 476-479. https://doi.org/10.1080/09513590.2017.1290072
  24. Liu, P., Hopfner, R. L., Xu, Y. J. and Gopalakrishnan, V. (1999) Vasopressin-evoked [Ca2+]i responses in neonatal rat cardiomyocytes. J. Cardiovasc. Pharmacol. 34, 540-546. https://doi.org/10.1097/00005344-199910000-00010
  25. Matula, K., Collie-Duguid, E., Murray, G., Parikh, K., Grabsch, H., Tan, P., Lalwani, S., Garau, R., Ong, Y., Bain, G., Smith, A. D., Urquhart, G., Bielawski, J., Finnegan, M. and Petty, R. (2015) Regulation of cellular sphingosine-1-phosphate by sphingosine kinase 1 and sphingosine-1-phopshate lyase determines chemotherapy resistance in gastroesophageal cancer. BMC Cancer 15, 762. https://doi.org/10.1186/s12885-015-1718-7
  26. Milara, J., Mata, M., Mauricio, M. D., Donet, E., Morcillo, E. J. and Cortijo, J. (2009) Sphingosine-1-phosphate increases human alveolar epithelial IL-8 secretion, proliferation and neutrophil chemotaxis. Eur. J. Pharmacol. 609, 132-139. https://doi.org/10.1016/j.ejphar.2009.03.012
  27. Nema, R., Vishwakarma, S., Agarwal, R., Panday, R. K. and Kumar, A. (2016) Emerging role of sphingosine-1-phosphate signaling in head and neck squamous cell carcinoma. Onco Targets Ther. 9, 3269-3280.
  28. Ng, M. L., Wadham, C. and Sukocheva, O. A. (2017) The role of sphingolipid signalling in diabetesassociated pathologies (Review). Int. J. Mol. Med. 39, 243-252. https://doi.org/10.3892/ijmm.2017.2855
  29. Nishimura, N., Endo, S., Ueno, S., Ueno, N., Tatetsu, H., Hirata, S., Hata, H., Komohara, Y., Takeya, M., Mitsuya, H. and Okuno, Y. (2017) A xenograft model reveals that PU.1 functions as a tumor suppressor for multiple myeloma in vivo. Biochem. Biophys. Res. Commun. 486, 916-922. https://doi.org/10.1016/j.bbrc.2017.03.124
  30. Patmanathan, S. N., Wang, W., Yap, L. F., Herr, D. R. and Paterson, I. C. (2017) Mechanisms of sphingosine 1-phosphate receptor signalling in cancer. Cell Signal. 34, 66-75. https://doi.org/10.1016/j.cellsig.2017.03.002
  31. Puli, M. R., Rajsheel, P., Aswani, V., Agurla, S., Kuchitsu, K. and Raghavendra, A. S. (2016) Stomatal closure induced by phytosphingosine-1-phosphate and sphingosine-1-phosphate depends on nitric oxide and pH of guard cells in Pisum sativum. Planta 244, 831-841. https://doi.org/10.1007/s00425-016-2545-z
  32. Qiu, W. and Steinberg, S. F. (2016) Phos-tag SDS-PAGE resolves agonist-and isoform-specific activation patterns for PKD2 and PKD3 in cardiomyocytes and cardiac fibroblasts. J. Mol. Cell. Cardiol. 99, 14-22. https://doi.org/10.1016/j.yjmcc.2016.08.005
  33. Ruger, K., Ottenlinger, F., Schroder, M., Zivkovic, A., Stark, H., Pfeilschifter, J. M. and Radeke, H. H. (2014) Modulation of IL-33/ST2-TIR and TLR signalling pathway by fingolimod and analogues in immune cells. Scand. J. Immunol. 80, 398-407. https://doi.org/10.1111/sji.12238
  34. Selli, C. and Tosun, M. (2016) Effects of cyclopiazonic acid and dexamethasone on serotonin-induced calcium responses in vascular smooth muscle cells. J. Physiol. Biochem. 72, 245-253. https://doi.org/10.1007/s13105-016-0474-8
  35. Serafimidis, I., Rodriguez-Aznar, E., Lesche, M., Yoshioka, K., Takuwa, Y., Dahl, A., Pan, D. and Gavalas, A. (2017) Pancreas lineage allocation and specification are regulated by sphingosine-1-phosphate signalling. PLoS Biol. 15, e2000949. https://doi.org/10.1371/journal.pbio.2000949
  36. Shaifta, Y., Snetkov, V. A., Prieto-Lloret, J., Knock, G. A., Smirnov, S. V., Aaronson, P. I. and Ward, J. P. (2015) Sphingosylphosphorylcholine potentiates vasoreactivity and voltage-gated Ca2+ entry via NOX1 and reactive oxygen species. Cardiovasc. Res. 106, 121-130. https://doi.org/10.1093/cvr/cvv029
  37. Simo-Cheyou, E. R., Tan, J. J., Grygorczyk, R. and Srivastava, A. K. (2017) STIM-1 and ORAI-1 channel mediate angiotensin-II-induced expression of Egr-1 in vascular smooth muscle cells. J. Cell. Physiol. 232, 3496-3509. https://doi.org/10.1002/jcp.25810
  38. Sohn, U. D., Hong, Y. W., Choi, H. C., Ha, J. H., Lee, K. Y., Kim, W. J., Biancani, P., Jeong, J. H. and Huh, I. H. (2000) Increase of [Ca(2+)] i and release of arachidonic acid via activation of M2 receptor coupled to Gi and rho proteins in oesophageal muscle. Cell Signal. 12, 215-222. https://doi.org/10.1016/S0898-6568(99)00085-6
  39. Sysol, J. R., Natarajan, V. and Machado, R. F. (2016) PDGF induces SphK1 expression via Egr-1 to promote pulmonary artery smooth muscle cell proliferation. Am. J. Physiol. Cell Physiol. 310, C983-C992. https://doi.org/10.1152/ajpcell.00059.2016
  40. Tafelmeier, M., Fischer, A., Orso, E., Konovalova, T., Bottcher, A., Liebisch, G., Matysik, S. and Schmitz, G. (2017) Mildly oxidized HDL decrease agonist-induced platelet aggregation and release of procoagulant platelet extracellular vesicles. J. Steroid. Biochem. Mol. Biol. 169, 176-188. https://doi.org/10.1016/j.jsbmb.2016.05.003
  41. Terada, S., Muraoka, I. and Tabata, I. (2003) Changes in [Ca2+]i induced by several glucose transport-enhancing stimuli in rat epitrochlearis muscle. J. Appl. Physiol. 94, 1813-1820. https://doi.org/10.1152/japplphysiol.00780.2002
  42. Vestri, A., Pierucci, F., Frati, A., Monaco, L. and Meacci, E. (2017) Sphingosine 1-phosphate receptors: do they have a therapeutic potential in cardiac fibrosis? Front. Pharmacol. 8, 296. https://doi.org/10.3389/fphar.2017.00296
  43. Vyas, V., Ashby, C. R., Jr., Olgun, N. S., Sundaram, S., Salami, O., Munnangi, S., Pekson, R., Mahajan, P. and Reznik, S. E. (2015) Inhibition of sphingosine kinase prevents lipopolysaccharide-induced preterm birth and suppresses proinflammatory responses in a murine model. Am. J. Pathol. 185, 862-869. https://doi.org/10.1016/j.ajpath.2014.10.026
  44. Wetter, J. A., Revankar, C. and Hanson, B. J. (2009) Utilization of the Tango beta-arrestin recruitment technology for cell-based EDG receptor assay development and interrogation. J. Biomol. Screen. 14, 1134-1141. https://doi.org/10.1177/1087057109343809
  45. Yamazaki, Y., Kon, J., Sato, K., Tomura, H., Sato, M., Yoneya, T., Okazaki, H., Okajima, F. and Ohta, H. (2000) Edg-6 as a putative sphingosine 1-phosphate receptor coupling to $Ca^{2+}$ signaling pathway. Biochem. Biophys. Res. Commun. 268, 583-589. https://doi.org/10.1006/bbrc.2000.2162
  46. Yates, S. L., Fluhler, E. N. and Lippiello, P. M. (1992) Advances in the use of the fluorescent probe fura-2 for the estimation of intrasynaptosomal calcium. J. Neurosci. Res. 32, 255-260. https://doi.org/10.1002/jnr.490320215
  47. Yu, X., Wang, X., Huang, X., Buchenauer, H., Han, Q., Guo, J., Zhao, J., Qu, Z., Huang, L. and Kang, Z. (2011) Cloning and characterization of a wheat neutral ceramidase gene Ta-CDase. Mol. Biol. Rep. 38, 3447-3454. https://doi.org/10.1007/s11033-010-0454-y
  48. Zhai, L., Wu, R., Han, W., Zhang, Y. and Zhu, D. (2017) miR-127 enhances myogenic cell differentiation by targeting S1PR3. Cell Death Dis. 8, e2707. https://doi.org/10.1038/cddis.2017.128

Cited by

  1. Increased S1P induces S1PR2 internalization to blunt the sensitivity of colorectal cancer to 5-fluorouracil via promoting intracellular uracil generation vol.42, pp.3, 2021, https://doi.org/10.1038/s41401-020-0460-0