References
- Adamson, R. H., Sarai, R. K., Clark, J. F., Altangerel, A., Thirkill, T. L. and Curry, F. E. (2012) Attenuation by sphingosine-1-phosphate of rat microvessel acute permeability response to bradykinin is rapidly reversible. Am. J. Physiol. Heart Circ. Physiol. 302, H1929-H1935. https://doi.org/10.1152/ajpheart.00614.2011
- Ahmed, D., de Verdier, P. J., Ryk, C., Lunqe, O., Stal, P. and Flygare, J. (2015) FTY720 (Fingolimod) sensitizes hepatocellular carcinoma cells to sorafenib-mediated cytotoxicity. Pharmacol. Res. Perspect. 3, e00171. https://doi.org/10.1002/prp2.171
- Aoyama, Y., Sobue, S., Mizutani, N., Inoue, C., Kawamoto, Y., Nishizawa, Y., Ichihara, M., Kyogashima, M., Suzuki, M., Nozawa, Y. and Murate, T. (2017) Modulation of the sphingolipid rheostat is involved in paclitaxel resistance of the human prostate cancer cell line PC3-PR. Biochem. Biophys. Res. Commun. 486, 551-557. https://doi.org/10.1016/j.bbrc.2017.03.084
- Archbold, J. K., Martin, J. L. and Sweet, M. J. (2014) Towards selective lysophospholipid GPCR modulators. Trends Pharmacol. Sci. 35, 219-226. https://doi.org/10.1016/j.tips.2014.03.004
- Badawy, S. M. M., Okada, T., Kajimoto, T., Ijuin, T. and Nakamura, S. I. (2017) DHHC5-mediated palmitoylation of S1P receptor subtype 1 determines G-protein coupling. Sci. Rep. 7, 16552. https://doi.org/10.1038/s41598-017-16457-4
- Bates, R. C., Fees, C. P., Holland, W. L., Winger, C. C., Batbayar, K., Ancar, R., Bergren, T., Petcoff, D. and Stith, B. J. (2014) Activation of Src and release of intracellular calcium by phosphatidic acid during Xenopus laevis fertilization. Dev. Biol. 386, 165-180. https://doi.org/10.1016/j.ydbio.2013.11.006
- Becker, S., Kinny-Koster, B., Bartels, M., Scholz, M., Seehofer, D., Berg, T., Engelmann, C., Thiery, J., Ceglarek, U. and Kaiser, T. (2017) Low sphingosine-1-phosphate plasma levels are predictive for increased mortality in patients with liver cirrhosis. PLoS ONE 12, e0174424. https://doi.org/10.1371/journal.pone.0174424
- Biancani, P., Hillemeier, C., Bitar, K. N. and Makhlouf, G. M. (1987) Contraction mediated by Ca2+ influx in esophageal muscle and by Ca2+ release in the LES. Am. J. Physiol. 253, G760-G766.
- Candalija, A., Cubi, R., Ortega, A., Aguilera, J. and Gil, C. (2014) Trk receptors need neutral sphingomyelinase activity to promote cell viability. FEBS Lett. 588, 167-174. https://doi.org/10.1016/j.febslet.2013.11.032
- Choi, S. K., Ahn, D. S. and Lee, Y. H. (2009) Comparison of contractile mechanisms of sphingosylphosphorylcholine and sphingosine-1-phosphate in rabbit coronary artery. Cardiovasc. Res. 82, 324-332.
- Cui, K., Ruan, Y., Wang, T., Rao, K., Chen, Z., Wang, S. and Liu, J. (2017) FTY720 supplementation partially improves erectile dysfunction in rats with streptozotocin-induced type 1 diabetes through inhibition of endothelial dysfunction and corporal fibrosis. J. Sex. Med. 14, 323-335. https://doi.org/10.1016/j.jsxm.2017.01.006
- Delgado, A. and Martinez-Cartro, M. (2016) Therapeutic potential of the modulation of sphingosine-1-phosphate receptors. Curr. Med. Chem. 23, 242-264. https://doi.org/10.2174/0929867323666151207111509
- Dyckman, A. J. (2017) Modulators of sphingosine-1-phosphate pathway biology: recent advances of Sphingosine-1-phosphate Receptor 1 (S1P1) agonists and future perspectives. J. Med. Chem. 60, 5267-5289. https://doi.org/10.1021/acs.jmedchem.6b01575
- Feuerborn, R., Becker, S., Poti, F., Nagel, P., Brodde, M., Schmidt, H., Christoffersen, C., Ceglarek, U., Burkhardt, R. and Nofer, J.R. (2017) High density lipoprotein (HDL)-associated sphingosine 1-phosphate (S1P) inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression. Atherosclerosis 257, 29-37. https://doi.org/10.1016/j.atherosclerosis.2016.12.009
- Filipenko, I., Schwalm, S., Reali, L., Pfeilschifter, J., Fabbro, D., Huwiler, A. and Zangemeister-Wittke, U. (2016) Upregulation of the S1P3 receptor in metastatic breast cancer cells increases migration and invasion by induction of PGE2 and EP2/EP4 activation. Biochim. Biophys. Acta 1861, 1840-1851. https://doi.org/10.1016/j.bbalip.2016.09.005
- Fuhrmann, I. K., Steinhagen, J., Ruther, W. and Schumacher, U. (2015) Comparative immunohistochemical evaluation of the zonal distribution of extracellular matrix and inflammation markers in human meniscus in osteoarthritis and rheumatoid arthritis. Acta Histochem. 117, 243-254. https://doi.org/10.1016/j.acthis.2014.12.009
- Germinario, E., Bondi, M., Cencetti, F., Donati, C., Nocella, M., Colombini, B., Betto, R., Bruni, P., Bagni, M. A. and Danieli-Betto, D. (2016) S1P3 receptor influences key physiological properties of fast-twitch extensor digitorum longus muscle. J. Appl. Physiol. 120, 1288-1300. https://doi.org/10.1152/japplphysiol.00345.2015
- Gomez-Munoz, A., Gangoiti, P., Granado, M. H., Arana, L. and Ouro, A. (2010) Ceramide-1-phosphate in cell survival and inflammatory signaling. Adv. Exp. Med. Biol. 688, 118-130.
- Hohenhaus, D. M., Schaale, K., Le Cao, K. A., Seow, V., Iyer, A., Fairlie, D. P. and Sweet, M. J. (2013) An mRNA atlas of G protein-coupled receptor expression during primary human monocyte/macrophage differentiation and lipopolysaccharide-mediated activation identifies targetable candidate regulators of inflammation. Immunobiology 218, 1345-1353. https://doi.org/10.1016/j.imbio.2013.07.001
- Kanemura, N., Shibata, R., Ohashi, K., Ogawa, H., Hiramatsu-Ito, M., Enomoto, T., Yuasa, D., Ito, M., Hayakawa, S., Otaka, N., Murohara, T. and Ouchi, N. (2017) C1q/TNF-related protein 1 prevents neointimal formation after arterial injury. Atherosclerosis 257, 138-145. https://doi.org/10.1016/j.atherosclerosis.2017.01.014
- Li, N. and Zhang, F. (2016) Implication of sphingosin-1-phosphate in cardiovascular regulation. Front. Biosci. (Landmark Ed.) 21, 1296-1313. https://doi.org/10.2741/4458
- Li, Q., Chen, B., Zeng, C., Fan, A., Yuan, Y., Guo, X., Huang, X. and Huang, Q. (2015) Differential activation of receptors and signal pathways upon stimulation by different doses of sphingosine-1-phosphate in endothelial cells. Exp. Physiol. 100, 95-107. https://doi.org/10.1113/expphysiol.2014.082149
- Li, S., Chen, J., Fang, X. and Xia, X. (2017) Sphingosine-1-phosphate activates the AKT pathway to inhibit chemotherapy induced human granulosa cell apoptosis. Gynecol. Endocrinol. 33, 476-479. https://doi.org/10.1080/09513590.2017.1290072
- Liu, P., Hopfner, R. L., Xu, Y. J. and Gopalakrishnan, V. (1999) Vasopressin-evoked [Ca2+]i responses in neonatal rat cardiomyocytes. J. Cardiovasc. Pharmacol. 34, 540-546. https://doi.org/10.1097/00005344-199910000-00010
- Matula, K., Collie-Duguid, E., Murray, G., Parikh, K., Grabsch, H., Tan, P., Lalwani, S., Garau, R., Ong, Y., Bain, G., Smith, A. D., Urquhart, G., Bielawski, J., Finnegan, M. and Petty, R. (2015) Regulation of cellular sphingosine-1-phosphate by sphingosine kinase 1 and sphingosine-1-phopshate lyase determines chemotherapy resistance in gastroesophageal cancer. BMC Cancer 15, 762. https://doi.org/10.1186/s12885-015-1718-7
- Milara, J., Mata, M., Mauricio, M. D., Donet, E., Morcillo, E. J. and Cortijo, J. (2009) Sphingosine-1-phosphate increases human alveolar epithelial IL-8 secretion, proliferation and neutrophil chemotaxis. Eur. J. Pharmacol. 609, 132-139. https://doi.org/10.1016/j.ejphar.2009.03.012
- Nema, R., Vishwakarma, S., Agarwal, R., Panday, R. K. and Kumar, A. (2016) Emerging role of sphingosine-1-phosphate signaling in head and neck squamous cell carcinoma. Onco Targets Ther. 9, 3269-3280.
- Ng, M. L., Wadham, C. and Sukocheva, O. A. (2017) The role of sphingolipid signalling in diabetesassociated pathologies (Review). Int. J. Mol. Med. 39, 243-252. https://doi.org/10.3892/ijmm.2017.2855
- Nishimura, N., Endo, S., Ueno, S., Ueno, N., Tatetsu, H., Hirata, S., Hata, H., Komohara, Y., Takeya, M., Mitsuya, H. and Okuno, Y. (2017) A xenograft model reveals that PU.1 functions as a tumor suppressor for multiple myeloma in vivo. Biochem. Biophys. Res. Commun. 486, 916-922. https://doi.org/10.1016/j.bbrc.2017.03.124
- Patmanathan, S. N., Wang, W., Yap, L. F., Herr, D. R. and Paterson, I. C. (2017) Mechanisms of sphingosine 1-phosphate receptor signalling in cancer. Cell Signal. 34, 66-75. https://doi.org/10.1016/j.cellsig.2017.03.002
- Puli, M. R., Rajsheel, P., Aswani, V., Agurla, S., Kuchitsu, K. and Raghavendra, A. S. (2016) Stomatal closure induced by phytosphingosine-1-phosphate and sphingosine-1-phosphate depends on nitric oxide and pH of guard cells in Pisum sativum. Planta 244, 831-841. https://doi.org/10.1007/s00425-016-2545-z
- Qiu, W. and Steinberg, S. F. (2016) Phos-tag SDS-PAGE resolves agonist-and isoform-specific activation patterns for PKD2 and PKD3 in cardiomyocytes and cardiac fibroblasts. J. Mol. Cell. Cardiol. 99, 14-22. https://doi.org/10.1016/j.yjmcc.2016.08.005
- Ruger, K., Ottenlinger, F., Schroder, M., Zivkovic, A., Stark, H., Pfeilschifter, J. M. and Radeke, H. H. (2014) Modulation of IL-33/ST2-TIR and TLR signalling pathway by fingolimod and analogues in immune cells. Scand. J. Immunol. 80, 398-407. https://doi.org/10.1111/sji.12238
- Selli, C. and Tosun, M. (2016) Effects of cyclopiazonic acid and dexamethasone on serotonin-induced calcium responses in vascular smooth muscle cells. J. Physiol. Biochem. 72, 245-253. https://doi.org/10.1007/s13105-016-0474-8
- Serafimidis, I., Rodriguez-Aznar, E., Lesche, M., Yoshioka, K., Takuwa, Y., Dahl, A., Pan, D. and Gavalas, A. (2017) Pancreas lineage allocation and specification are regulated by sphingosine-1-phosphate signalling. PLoS Biol. 15, e2000949. https://doi.org/10.1371/journal.pbio.2000949
- Shaifta, Y., Snetkov, V. A., Prieto-Lloret, J., Knock, G. A., Smirnov, S. V., Aaronson, P. I. and Ward, J. P. (2015) Sphingosylphosphorylcholine potentiates vasoreactivity and voltage-gated Ca2+ entry via NOX1 and reactive oxygen species. Cardiovasc. Res. 106, 121-130. https://doi.org/10.1093/cvr/cvv029
- Simo-Cheyou, E. R., Tan, J. J., Grygorczyk, R. and Srivastava, A. K. (2017) STIM-1 and ORAI-1 channel mediate angiotensin-II-induced expression of Egr-1 in vascular smooth muscle cells. J. Cell. Physiol. 232, 3496-3509. https://doi.org/10.1002/jcp.25810
- Sohn, U. D., Hong, Y. W., Choi, H. C., Ha, J. H., Lee, K. Y., Kim, W. J., Biancani, P., Jeong, J. H. and Huh, I. H. (2000) Increase of [Ca(2+)] i and release of arachidonic acid via activation of M2 receptor coupled to Gi and rho proteins in oesophageal muscle. Cell Signal. 12, 215-222. https://doi.org/10.1016/S0898-6568(99)00085-6
- Sysol, J. R., Natarajan, V. and Machado, R. F. (2016) PDGF induces SphK1 expression via Egr-1 to promote pulmonary artery smooth muscle cell proliferation. Am. J. Physiol. Cell Physiol. 310, C983-C992. https://doi.org/10.1152/ajpcell.00059.2016
- Tafelmeier, M., Fischer, A., Orso, E., Konovalova, T., Bottcher, A., Liebisch, G., Matysik, S. and Schmitz, G. (2017) Mildly oxidized HDL decrease agonist-induced platelet aggregation and release of procoagulant platelet extracellular vesicles. J. Steroid. Biochem. Mol. Biol. 169, 176-188. https://doi.org/10.1016/j.jsbmb.2016.05.003
- Terada, S., Muraoka, I. and Tabata, I. (2003) Changes in [Ca2+]i induced by several glucose transport-enhancing stimuli in rat epitrochlearis muscle. J. Appl. Physiol. 94, 1813-1820. https://doi.org/10.1152/japplphysiol.00780.2002
- Vestri, A., Pierucci, F., Frati, A., Monaco, L. and Meacci, E. (2017) Sphingosine 1-phosphate receptors: do they have a therapeutic potential in cardiac fibrosis? Front. Pharmacol. 8, 296. https://doi.org/10.3389/fphar.2017.00296
- Vyas, V., Ashby, C. R., Jr., Olgun, N. S., Sundaram, S., Salami, O., Munnangi, S., Pekson, R., Mahajan, P. and Reznik, S. E. (2015) Inhibition of sphingosine kinase prevents lipopolysaccharide-induced preterm birth and suppresses proinflammatory responses in a murine model. Am. J. Pathol. 185, 862-869. https://doi.org/10.1016/j.ajpath.2014.10.026
- Wetter, J. A., Revankar, C. and Hanson, B. J. (2009) Utilization of the Tango beta-arrestin recruitment technology for cell-based EDG receptor assay development and interrogation. J. Biomol. Screen. 14, 1134-1141. https://doi.org/10.1177/1087057109343809
-
Yamazaki, Y., Kon, J., Sato, K., Tomura, H., Sato, M., Yoneya, T., Okazaki, H., Okajima, F. and Ohta, H. (2000) Edg-6 as a putative sphingosine 1-phosphate receptor coupling to
$Ca^{2+}$ signaling pathway. Biochem. Biophys. Res. Commun. 268, 583-589. https://doi.org/10.1006/bbrc.2000.2162 - Yates, S. L., Fluhler, E. N. and Lippiello, P. M. (1992) Advances in the use of the fluorescent probe fura-2 for the estimation of intrasynaptosomal calcium. J. Neurosci. Res. 32, 255-260. https://doi.org/10.1002/jnr.490320215
- Yu, X., Wang, X., Huang, X., Buchenauer, H., Han, Q., Guo, J., Zhao, J., Qu, Z., Huang, L. and Kang, Z. (2011) Cloning and characterization of a wheat neutral ceramidase gene Ta-CDase. Mol. Biol. Rep. 38, 3447-3454. https://doi.org/10.1007/s11033-010-0454-y
- Zhai, L., Wu, R., Han, W., Zhang, Y. and Zhu, D. (2017) miR-127 enhances myogenic cell differentiation by targeting S1PR3. Cell Death Dis. 8, e2707. https://doi.org/10.1038/cddis.2017.128
Cited by
- Increased S1P induces S1PR2 internalization to blunt the sensitivity of colorectal cancer to 5-fluorouracil via promoting intracellular uracil generation vol.42, pp.3, 2021, https://doi.org/10.1038/s41401-020-0460-0