DOI QR코드

DOI QR Code

광대역 응용을 위한 6~10 GHz InGaAs 0.15μm pHEMT 27 dBm급 전력증폭기

Wide-Band 6~10 GHz InGaAs 0.15μm pHEMT 27 dBm Power Amplifier

  • 투고 : 2018.05.28
  • 심사 : 2018.09.28
  • 발행 : 2018.10.31

초록

본 논문에서는 InGaAs enhancement mode $0.15{\mu}m$ pHEMT를 이용하여 6~10 GHz 대역에서 동작하는 wide-band 전력증폭기를 설계하였다. Enhancement 소자는 gate 바이어스를 양전압으로 사용하며, 음전압을 위한 추가회로 구성이 없어지며 모듈의 크기를 줄일 수 있다. 또한, 본 설계에서는 3D-EM(electromagnetic) 시뮬레이션을 통해 패키지 본드와이어의 인덕턴스 및 기판 손실을 예측하여 설계하였다. 광대역을 위해 lossy matching을 사용하고, 전력, 효율 관점에서 최적의 바이어스를 선정하여 설계하였다. 제안한 전력증폭기의 패키지 칩은 6~10 GHz 대역에서 20 dB 이상의 평탄 이득, 8 dB 이상의 입출력 반사손실, 출력전력은 27 dBm 이상, 전력부가효율은 35 % 이상으로 측정되었다.

A 6~10 GHz wide-band power amplifier was designed using an InGaAs enhancement-mode(E-mode) $0.15{\mu}m$ pseudomorphic high-electron-mobility transistor(pHEMT). The positive gate bias of the E-mode pHEMT device removes the need for complex negative voltage generation circuits, therefore reducing the module size. The wire bond and substrate loss parameters were modeled and extracted using a three-dimensional electromagnetic(3D EM) simulation. For wideband characteristics, lossy matching was adopted and the gate bias was optimized for maximum power and efficiency. The measured gain, in/output return loss, output power, and power-added efficiency were greater than 20 dB, 8 dB, 27 dBm, and 35 %, respectively, in the 6~10 GHz band.

키워드

참고문헌

  1. E. Babakrpur, A. Medi, and W. Namgoong, "Wideband GaAs MMIC driver power amplifier for X and Ku bands," in 2017 Texas Symposium on Wireless and Microwave Circuits and Systems(WMCS), 2017, pp. 1-4.
  2. Qorvo, "X band driver PA, TGA2700," Available: http://www.triquint.com/products/p/TGA2700.
  3. Analog Devices, "GaAs pHEMT MMIC 1 W power amplifier, 6-10 GHz, HMC590." Available: http://www.analog.com/media/en/technical-documentation/data-sheets/hmc590chips.pdf.
  4. X. Ding, L. Zhang, "A high-efficiency GaAs MMIC power amplifier for multi-standard system," IEEE Microwave and Wireless Component Letters, vol. 26, pp. 55-57, Jan. 2016. https://doi.org/10.1109/LMWC.2015.2505615
  5. A. Grebennikov, RF and Microwave Power Amplifier Design, 2nd ed. New-York, McGraw-Hill, 2015, pp. 258-260.
  6. A. Yousefi, A. Medi, "Wide-band high-efficiency Kuband power amplifier," IET Circuits, Devices & Systems, vol. 8, no. 6, pp. 583-592, 2014. https://doi.org/10.1049/iet-cds.2014.0134
  7. G. Nikandish, A. Medi, "A design procedure for highefficiency and compact-size 5-10-W MMIC power amplifiers in GaAs pHEMT technology," IEEE Transaction on Microwave Theory and Techniques, vol. 61, no. 8, pp. 2922-2933, Aug. 2013. https://doi.org/10.1109/TMTT.2013.2271997
  8. O. Silva, I. Angelov, and H. Zirath, "Octave band linear MMIC amplifier with +40-dBm OIP3 for high-reliability space applications," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 7, pp. 2059-2067, Jul. 2016. https://doi.org/10.1109/TMTT.2016.2574856
  9. Y. C. Lin, T. S. Horng, L. T. Hwang, C. T. Chiu, and C. P. Hung, "Low cost QFN package design for millimeter- wave applications," in 2012 IEEE 62nd Electronic Components and Technology Conference, San Diego, CA, 2012, pp. 915-919.
  10. A. Chandrasekhar, S. Stoukatch, S. Brebels, J. Balachandran, E. Beyne, and W. De Raedt, et al., "Characterisation, modelling and design of bond-wire interconnects for chip-package co-design insertion loss(dB)," in 33rd European Microwave Conference Proceedings, Munich, 2003, vol. 1, pp. 301-304.