DOI QR코드

DOI QR Code

Development and Characterization of a New Cell Line from Olive Flounder Paralichthys olivaceus

  • Kim, Ju-Won (Biotechnology Research Division, National Institute of Fisheries Science) ;
  • Oh, Bang Geun (Biotechnology Research Division, National Institute of Fisheries Science) ;
  • Kim, Julan (Biotechnology Research Division, National Institute of Fisheries Science) ;
  • Kim, Dong-Gyun (Biotechnology Research Division, National Institute of Fisheries Science) ;
  • Nam, Bo-Hye (Biotechnology Research Division, National Institute of Fisheries Science) ;
  • Kim, Young-Ok (Biotechnology Research Division, National Institute of Fisheries Science) ;
  • Park, Jung Youn (Biotechnology Research Division, National Institute of Fisheries Science) ;
  • Cheong, JaeHun (Dept. of Integrated Biological Science, Pusan National University) ;
  • Kong, Hee Jeong (Biotechnology Research Division, National Institute of Fisheries Science)
  • Received : 2018.07.12
  • Accepted : 2018.08.31
  • Published : 2018.09.30

Abstract

A new embryonic cell line (OFEC-17FEN) derived from olive flounder Paralichthys olivaceus was developed. OFEC-17FEN cells were subcultured for <30 passages over ~200 days. OFEC-17FEN cells had a doubling time of 114.34 h and modal diploid chromosome number was 48. The pluripotency genes POU5f1 and NANOG were expressed in OFEC-17FEN cells. However, the lack of several pluripotency-related genes expression indicates that OFEC-17FEN cells are not stem cells. OFEC-17FEN cells transfected with plasmid pEGFP-c1 exhibited a strong green fluorescent signal at 48 h after transfection. Accordingly, OFEC-17FEN cells may be useful for both basic research and biotechnological application.

Keywords

References

  1. Akiduki G (2010) Egg extract promotes cell migration and growth in primary culture of early embryos in the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Appl Entomol Zool 45:153-161. https://doi.org/10.1303/aez.2010.153
  2. Alvarez MC, Bejar J, Chen S, Hong Y (2007) Fish ES cells and applications to biotechnology. Mar Biotechnol 9:117-127. https://doi.org/10.1007/s10126-006-6034-4
  3. Bejar J, Hong Y, Alvarez MC (2002) An ES-like cell line from the marine fish Sparus aurata: Characterization and chimaera production. Transgenic Res 11:279-289. https://doi.org/10.1023/A:1015678416921
  4. Bryson SP, Joyce EM, Martell DJ, Lee LEJ, Holt SE, Kales SC, Fujiki K, Dixon B, Bols NC (2006) A cell line (HEW) from embryos of haddock (Melanogrammus aeglefinius) and its capacity to tolerate environmental extremes. Mar Biotechnol 8:641-653. https://doi.org/10.1007/s10126-005-6163-1
  5. Chen HT (2005) Practical program evaluation: Assess and improve program planning, implementation, and effectiveness. Prev Chronic Dis 3:A25.
  6. Chen SL, Ren GC, Sha ZX, Shi CY (2004) Establishment of a continuous embryonic cell line from Japanese flounder Paralichthys olivaceus for virus isolation. Dis Aquat Organ 60:241-246. https://doi.org/10.3354/dao060241
  7. Chen SL, Sha ZX, Ye HQ (2003a) Establishment of a pluripotent embryonic cell line from sea perch (Lateolabrax japonicus) embryos. Aquaculture 218:141-151. https://doi.org/10.1016/S0044-8486(02)00570-7
  8. Chen SL, Ye HQ, Sha ZX, Hong Y (2003b) Derivation of a pluripotent embryonic cell line from red sea bream blastulas. J Fish Biol 63:795-805. https://doi.org/10.1046/j.1095-8649.2003.00192.x
  9. Fan L, Jiang J, Gao J, Song H, Liu J, Yang L, Li Z, Chen Y, Zhang Q, Wang X (2015) Identification and characterization of a PRDM14 homolog in Japanese flounder (Paralichthys olivaceus). Int J Mol Sci 16:9097-9118. https://doi.org/10.3390/ijms16059097
  10. Fan Z, Liu L, Huang X, Zhao Y, Zhou L, Wang D, Wei J (2017) Establishment and growth responses of Nile tilapia embryonic stem-like cell lines under feeder-free condition. Dev Growth Differ 59:83-93. https://doi.org/10.1111/dgd.12341
  11. Foresti F, Oliveira C, de Almeida-Toledo LF (1993) A method for chromosome preparations from large fish specimens using in vitro short-term treatment with colchicine. Experientia 49:810-813. https://doi.org/10.1007/BF01923555
  12. Gao J, Wang J, Jiang J, Fan L, Wang W, Liu J, Zhang Q, Wang X (2013) Identification and characterization of a nanog homolog in Japanese flounder (Paralichthys olivaceus). Gene 531:411-421. https://doi.org/10.1016/j.gene.2013.08.030
  13. Gao J, Wang Z, Shao K, Fan L, Yang L, Song H, Liu M, Wang Z, Wang X, Zhang Q (2014) Identification and characterization of a Sox2 homolog in the Japanese flounder Paralichthys olivaceus. Gene 544:165-176. https://doi.org/10.1016/j.gene.2014.04.062
  14. Gomez-Lechon MJ, Donato MT, Lahoz A, Castell JV (2008) Cell lines: A tool for in vitro drug metabolism studies. Curr Drug Metab 9:1-11. https://doi.org/10.2174/138920008783331086
  15. Higaki S, Shimada M, Koyama Y, Fujioka Y, Sakai N, Takada T (2015) Development and characterization of an embryonic cell line from endangered endemic cyprinid Honmoroko Gnathopogon caerulescens (Sauvage, 1883). In Vitro Cell Dev Biol Anim 51:763-768. https://doi.org/10.1007/s11626-015-9894-y
  16. Holen E, Kausland A, Skjaerven K (2010) Embryonic stem cells isolated from Atlantic cod (Gadus morhua) and the developmental expression of a stage-specific transcription factor ac-Pou2. Fish Physiol Biochem 36:1029-1039. https://doi.org/10.1007/s10695-010-9381-z
  17. Hong Y, Winkler C, Schartl M (1996) Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes). Mech Dev 60:33-44. https://doi.org/10.1016/S0925-4773(96)00596-5
  18. Kang MS, Oh MJ, Kim YJ, Kawai K, Jung SJ (2003) Establishment and characterization of two new cell lines derived from flounder, Paralichthys olivaceus (Temminck & Schlegel). J Fish Dis 26:657-665. https://doi.org/10.1046/j.1365-2761.2003.00499.x
  19. Kasai H, Yoshimizu M (2001) Establishment of two Japanese flounder embryo cell lines. Bull Fish Sci Hokkaido Univ 52:67-70.
  20. Kim JE, Lee YM, Lee JH, Noh JK, Kim HC, Park CJ, Park JW, Kim KK (2014) Development and validation of single nucleotide polymorphism (SNP) Markers from an expressed sequence tag (EST) database in olive flounder (Paralichthys olivaceus) Dev Reprod 18:275-286. https://doi.org/10.12717/DR.2014.18.4.275
  21. Lachnit M, Kur E, Driever W (2008) Alterations of the cytoskeleton in all three embryonic lineages contribute to the epiboly defect of Pou5f1/Oct4 deficient MZspg zebrafish embryos. Dev Biol 315:1-17. https://doi.org/10.1016/j.ydbio.2007.10.008
  22. Lee D, Kim MS, Nam YK, Kim DS, Gong SP (2013) Establishment and characterization of permanent cell lines from Oryzias dancena embryos. Fish Aquatic Sci 16:177-185.
  23. Liu J, You F, Wang XC, Xu YL, Zhang PJ (1999) Chromosome and karyotype evidence of artificial-induced gynogenesis in the olive flounder Paralichthys olivaceus (T. et S). Oceanol Limnol Sin 30:72-79.
  24. Park IS, Hur JW, Choi JW (2012) Hematological responses, survival, and respiratory exchange in the olive flounder, Paralichthys olivaceus, during starvation. Asian-Australas J Anim Sci 25:1276-1284. https://doi.org/10.5713/ajas.2012.12128
  25. Peng L, Zheng Y, You F, Wu Z, Zou Y, Zhang P (2016) Establishment and characterization of a testicular Sertoli cell line from olive flounder Paralichthys olivaceus. Chin J Oceanol Limnol 34:1054-1063. https://doi.org/10.1007/s00343-016-5091-4
  26. Rajpert-De Meyts E, Hanstein R, Jorgensen N, Graem N, Vogt PH, Skakkebaek NE (2004) Developmental expression of POU5F1 (OCT-3/4) in normal and dysgenetic human gonads. Hum Reprod 19:1338-1344. https://doi.org/10.1093/humrep/deh265
  27. Ristow SS, de Avila J (1994) Susceptibility of four new salmonid cell lines to infectious hematopoietic necrosis virus. J Aquat Anim Health 6:260-265. https://doi.org/10.1577/1548-8667(1994)006<0260:SOFNSC>2.3.CO;2
  28. Robertson DR (1998) Do coral-reef fish faunas have a distinctive taxonomic structure? Coral Reefs 17:179-186. https://doi.org/10.1007/s003380050113
  29. Sassen WA, Lehne F, Russo G, Wargenau S, Dubel S, Koster RW (2017) Embryonic zebrafish primary cell culture for transfection and live cellular and subcellular imaging. Dev Biol 430:18-31. https://doi.org/10.1016/j.ydbio.2017.07.014
  30. Servili A, Bufalino MR, Nishikawa R, de Melo IS, Munoz-Cueto JA, Lee LEJ (2009) Establishment of long term cultures of neural stem cells from adult sea bass, Dicentrarchus labrax. Comp Biochem Physiol A Mol Integr Physiol 152:245-254. https://doi.org/10.1016/j.cbpa.2008.10.018
  31. Shimizu C, Shike H, Malicki DM, Breisch E, Westerman M, Buchanan J, Ligman HR, Phillips RB, Carlberg JM, Olst JV, Burns JC (2003) Characterization of a white bass (Morone chrysops) embryonic cell line with epithelial features. In Vitro Cell Dev Biol Anim 39:29-35. https://doi.org/10.1290/1543-706X(2003)039<0029:COAWBM>2.0.CO;2
  32. Sun L, Bradford CS, Ghosh C, Collodi P, Barnes DW (1995) ES-like cell cultures derived from early zebrafish embryos. Mol Mar Biol Biotechnol 4:193-199.
  33. Suzuki T, Komada H, Takai R, Arii K, Kozima TT (1995) Relation between toxicity of cryoprotectant DMSO and its concentration in several fish embryos. Fish Sci 61:193-197.
  34. Tong SL, Miao HZ, Li H (1998) Three new continuous fish cell lines of SPH, SPS and RSBF derived from sea perch (Lateolabrax japaonicus) and red sea bream (Pagrosomus major). Aquaculture 169:143-151. https://doi.org/10.1016/S0044-8486(98)00329-9
  35. Wang XL, Wang N, Sha ZX, Chen SL (2010) Establishment, characterization of a new cell line from heart of half smooth tongue sole (Cynoglossus semilaevis). Fish physiol biochem 36:1181-1189. https://doi.org/10.1007/s10695-010-9396-5
  36. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318-324. https://doi.org/10.1038/nature05944
  37. Wolf K, Quimby MC (1962) Established eurythermic line of fish cells in vitro. Science 135:1065-1066. https://doi.org/10.1126/science.135.3508.1065
  38. Yang J, Chai L, Liu F, Fink LM, Lin P, Silberstein LE, Amin HM, Ward DC, Ma Y (2007) Bmi-1 is a target gene for SALL4 in hematopoietic and leukemic cells. Proc Nati Acad Sci USA 104:10494-10499. https://doi.org/10.1073/pnas.0704001104
  39. Yang J, Gao C, Chai L, Ma Y (2010) A novel SALL4/OCT4 transcriptional feedback network for pluripotency of embryonic stem cells. PLoS ONE 5:e10766. https://doi.org/10.1371/journal.pone.0010766
  40. Yu F, Li J, Chen H, Fu J, Ray S, Huang S, Ai W (2011a) Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene 30:2161-2172. https://doi.org/10.1038/onc.2010.591
  41. Yu J, Chau KF, Vodyanik MA, Jiang J, Jiang Y (2011b) Efficient feeder-free episomal reprogramming with small molecules. PLoS ONE 6:e17557. https://doi.org/10.1371/journal.pone.0017557
  42. Zhang T, Rawson DM (1995) Studies on chilling sensitivity of zebrafish (Brachydanio rerio) embryos. Cryobiology 32:239-246. https://doi.org/10.1006/cryo.1995.1023
  43. Zheng WJ, Sun L (2011) Evaluation of housekeeping genes as references for quantitative real time RT-PCR analysis of gene expression in Japanese flounder (Paralichthys olivaceus). Fish Shellfish Immunol 30:638-645. https://doi.org/10.1016/j.fsi.2010.12.014
  44. Zheng Y, Peng LM, You F, Zou YX, Zhang PJ, Chen SL (2015) Establishment and characterization of a fish-cell line from the brain of Japanese flounder Paralichthys olivaceus. J Fish Biol 87:115-122. https://doi.org/10.1111/jfb.12700