DOI QR코드

DOI QR Code

Synthesis of LaMnO3-Diamond Composites and Their Photocatalytic Activity in the Degradation of Weak Acid Red C-3GN

  • Huang, Hao (State Key Laboratory of Metastable Materials Science & Technology Yanshan University) ;
  • Lu, Benqian (State Key Laboratory of Metastable Materials Science & Technology Yanshan University) ;
  • Liu, Yuanyuan (State Key Laboratory of Metastable Materials Science & Technology Yanshan University) ;
  • Wang, Xeuqian (State Key Laboratory of Metastable Materials Science & Technology Yanshan University) ;
  • Hu, Jie (State Key Laboratory of Metastable Materials Science & Technology Yanshan University)
  • Received : 2018.06.17
  • Accepted : 2018.09.14
  • Published : 2018.10.31

Abstract

In this study, a series of $LaMnO_3$-diamond composites with varied $LaMnO_3$ mass contents supported on micro-diamond have been synthesized using a sol-gel method. The as-prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and the Fourier transform infrared spectra (FTIR). Meanwhile, the photocatalytic performances were also tested by photoluminescence (PL) spectroscopy, ultraviolet-visible diffuse reflection spectra (UV-Vis DRS) and the degradation of weak acid red C-3GN (RC-3GN). Results show that the peak position of $LaMnO_3$ is shifted to low angle after the introduction of diamond, and perovskite particles uniformly distributed on the surface of diamond, forming a network structure, which can increase the active sites and the absorption of dye molecules. When the mass ratio of $LaMnO_3$ and diamond is 1:2 (LMO-Dia-2), the composite shows the most excellent photocatalytic activity. This result offers a sample route to enlarge the range of the application of micro-diamond and provide a new carrier for perovskite photocatalysts.

Keywords

Acknowledgement

Supported by : Natural Science Foundation of Hebei Province, China Scholarship Council

References

  1. N. Bao, S. He, Q. Z. Zhang, Z. Yin, Y. X. Zhang and X. H. Xu, Ceram. Int. 5916, 41 (2015).
  2. T. V. A. Kusumam, T. Panakkal, T. Divya, M. P. Nikhila, M. Anju, K. Anas and N. K. Renuka, Ceram. Int. 3679, 42 (2016).
  3. A. A. P. Mansur, H. S. Mansur, F. P. Ramanery, L. C. Oliveira and P. P. Souza, Appl. Catal. B, Environ. 269, 158 (2014).
  4. X. W. Zhang, D. K. Wang, D. R. S. Lopez and J. C. D. Costa, Chem. Eng. J. 314, 236 (2014).
  5. R. Khan, M. S. Hassan, P. Uthirakumar, J. H. Yun, M. S. Khil and I. H. Lee, Mater. Lett. 163, 152 (2015).
  6. S. Ghosh, N. A. Kouame, L. Ramos, S. Remita, A. Dazzi, A. D. Besseau, P. Beaunier, F. Goubard, P. H. Aubert and H. Remita, Nat. Mater. 505, 14 (2015).
  7. H. Y. Wang, Y. C. Yang, J. H. Wei, L. Le, Y. Liu, C. X. Pan, P. F. Fang, R. Xiong and J. Shi, Reac. Kinet. Mech. Cat. 341, 106 (2012).
  8. R. Saravanan, M. M. Khan, V. K. Gupta, E. Mosquera, F. Gracia, V. Narayanan and A. Stephen, J. Colloid Interface Sci. 126, 452 (2015).
  9. X. M. Liu, W. Y. Huang, G. X. Huang, F. M. Fu, H. Cheng, W. M. Guo, J. S. Li and H. D. Wu, Ceram. Int. 11710, 41 (2015).
  10. M. Ghiasi and A. Malekzadeh, Sep. Purif. Technol. 12, 134 (2014).
  11. Y. J. Luo, X. Y. Wang, Q. R. Qian and Q. H. Chen, Int. J. Hydrogen Energy 15836, 39 (2014).
  12. C. Chen, Y. C. He, Z. P. Du, H. Yuan and Y. X. Wu, Mater. Lett. 264, 110 (2013).
  13. Z. L. Hua, X. Y. Zhang, X. Bai, L. L. Lv, Z. F. Ye and X. Huang, J. Colloid Interface Sci. 45, 450 (2015).
  14. P. T. Dou, F. T. Tan, W. Wang, A. Sarreshteh, X. L. Qiao, X. L. Qiu and J. G. Chen, J. Photochem Photobiol A, Chem. 17, 302 (2015).
  15. M. J. Sampaio, C. G. Silva, A. M. T. Silva, L. M. P. Martinez, C. Han, S. M. Torres, J. L. Figueiredo, D. D. Dionysiou and J. L. Faria, Appl. Catal. B, Environ. 74, 170 (2015).
  16. J. Di, S. X. Li, Z. F. Zhao, Y. C. Huang, Y. Jia and H. J. Zheng, Chem. Eng. J. 60, 281 (2015).
  17. S. M. Miranda, G. E. Romanos, V. Likodimos, R. R. N. Marques, E. P. Favvas, F. K. Katsaros, K. L. Stefanopoulos, V. J. P. Vilar, J. L. Faria, P. Falaras and A. M. T. Silva, Appl. Catal. B, Environ. 65, 147 (2014).
  18. A. A. Ashkarran, M. Fakhari, H. Hamidinezhad, H. Haddadi and M. R. Nourani, J Mater. Res. Technol. 126, 4 (2015).
  19. T. Niu, G. L. Liu, Y. Chen, J. Yang, J. Wu, Y. Cao and Y. Liu, Appl. Surf. Sci. 388, 364 (2016).
  20. J. L. Li, X. J. Liu, X. Hou, W. Qin, Z. Sun and L. K. Pan, J. Colloid Interface Sci. 235, 458 (2015).
  21. H. Moussa, E. Girot, K. Mozet, H. Alem, G. Medjahdi and R. Schneider, Appl. Catal. B, Environ. 11, 185 (2016).
  22. C. Fang, X. P. Jia, N. Chen, Y. D. Li, L. S. Guo, L. C. Chen, H. A. Ma and X. B. Liu, J. Cryst. Growth 34, 436 (2016).
  23. A. M. Alexeev, R. R. Ismagilov, E. E. Ashkinazi, A. S. Orekhov, S. A. Malykhin and A. N. Obraztsov, Diam. Relat. Mater. 13, 65 (2016).
  24. D. Zhu, J. A. Bandy, S. Li and R. J. Hamers, Surf. Sci. 295, 650 (2016).
  25. C. Y. Zhang, L. J. Gu, Y. H. Lin, Y. X. Wang, D. G. Fu and Z. Z. Gu, J Photochem. Photobiol. A, Chem. 66, 207 (2009).
  26. C. Ratiu, F. Manea, C. Lazau, I. Grozescu and C. Radovan, Desalination 51, 260 (2010).
  27. J. Hu, J. H. Ma, L. N. Wang and H. Huang, J. Alloys Compd. 539, 583 (2014).
  28. N. S. Souza, A. D. Rodrigues and C. A. Cardoso, Phys. Lett. A 376, 544 (2012). https://doi.org/10.1016/j.physleta.2011.11.050
  29. F. C. Jia, Y. Z. Bai, F. Qu, J. Sun, J. J. Zhao and X. Jiang, Carbon 357, 25 (2010).
  30. C. L. Yua, W. Q. Zhoua, L. H. Zhua, G. Li, K. Yang and R. C. Jin, Appl. Catal. B, Environ. 1, 184 (2016).
  31. S. Q. Song, B. Cheng, N. S. Wu, A. Y. Meng, S. W. Cao and J. G. Yu, Appl. Catal. B, Environ. 71, 181 (2016).
  32. Y. G. Peng, J. L. Ji and D. J. Chen, Appl. Surf. Sci. 762, 356 (2015).
  33. J. Zhang, Y. B. Zhao, X. Zhao, Z. L. Liu and W. Chen, Sci. Rep. 6005, 4 (2014).
  34. E. Ghiasi, A. Malekzadeh and M. Ghias, J. Rare Earths 997, 31 (2013).
  35. J. Hu, H. S. Li, Q. Wu, Y. Zhao and Q. Z. Jiao, Chem. Eng. J. 144, 263 (2015).
  36. C. Balamurugan and D. W. Lee, Sens. Actuators B, Chem. 857, 221 (2015).
  37. A. Kumar, C. Schuerings, S. Kumar, A. Kumar and V. Krishnan, Beilstein J. Nanotechnol. 671, 9 (2018).
  38. S. R. Kumar, C. V. Abinaya, S. Amirthapandian and N. Ponpandian, Mater. Res. Bull. 270, 93 (2017).
  39. Y. D. Susanti, N. Afifah and R. Saleh, AIP Conf. Proc. 030039, 1862 (2017).
  40. N. Afifah and R. Saleh, Mater. Sci. Eng. 012065, 202 (2017).
  41. M. Shaterian, M. Enhessari, D. Rabbani, M. Asghari and M. S. Niasari, Appl. Surf. Sci. 213, 318 (2014).
  42. N. Afifah and R. Saleh, in 4th Int. Conf. Nano and Materials Engineering Materials Science Forum, Vol. 99 (2016), p. 864.
  43. C. Srilakshmi, R. Saraf and C. Shivakumara, Ind. Eng. Chem. Res. 7800, 54 (2015).
  44. R. D. Kumar, R. Thangappan and R. Jayavel, J. Phys. Chem. Solids 25, 101 (2017).
  45. C. B. Liu, D. S. Meng, Y. Li, L. L. Wang, Y. T. Liu and S. L. Luo, J. Alloys Compd. 44, 624 (2015).
  46. Y. S. Liu, S. H. Wei and W. Gao, J. Hazard. Mater. 59, 287 (2015).
  47. X. Liu, Z. Q. Liu, J. L. Lu, X. L. Wu, B. Xu and W. Chu, Appl. Surf. Sci. 513, 288 (2014).
  48. Y. C. Deng, L. Tang, C. Y. Feng, G. M. Zeng, J. J. Wang, Y. Lu, Y. N. Liu, J. F. Yu, S. Chen and Y. Y. Zhou, ACS Appl. Mater. Interfaces 42816, 9 (2017).
  49. D. Z. Lu, H. Q. Fan, K. K. Kondamareddy, H. W. Yu, A. X. Wang, H. J. Hao, M. Li and J. W. Shen, ACS Sustain. Chem. Eng. 9903, 6 (2018).