DOI QR코드

DOI QR Code

고체 로켓 추진기관에서 실리카/페놀릭 열반응 해석 연구

Numerical Analysis for Thermal Response of Silica Phenolic in Solid Rocket Motor

  • 투고 : 2017.06.07
  • 심사 : 2017.11.14
  • 발행 : 2018.08.01

초록

본 논문에서는 고체 로켓 추진기관에서 내열재 및 단열재로 사용되는 실리카/페놀릭 복합재료의 열반응을 고려한 열전도 수치해석을 수행하였다. 고체 로켓 추진기관의 연소 중 실리카/페놀릭의 삭마와 열분해 과정을 고려한 열전도 해석을 위해 1차원 유한차분법을 이용하여 계산을 수행하였다. 노즐벽에서의 경계조건은 대류열전달계수를 고려하였으며, 이는 적분방정식을 이용하여 계산하였다. 삭마두께 및 숯깊이 해석결과는 목삽입재 평가 모터인 TPEM-10을 이용한 시험결과와 비교분석하였으며, 잘 일치하는 것을 확인할 수 있었다.

In this paper, the numerical analysis for heat conduction of silica/phenolic composite material, used for solid rocket nozzle liners or insulators, is conducted. A 1-dimensional finite difference method for the analysis of silica/phenolic during the firing of a solid rocket motor is used to calculate heat conduction, considering surface ablation and thermal decomposition. The boundary condition at the nozzle wall, considering the convective heat transfer, is obtained via integration equations. The numerical results of the surface ablation and char depth are compared with the results of a TPEM-10 test motor, finding that the result of calculation agrees with the thermal response of the test motor.

키워드

참고문헌

  1. Reydellet, D., "Design Methods in Solid Rocket Motors," Advisory Group for Aerospace Research and Development, AD-A199356, 1988.
  2. ZieBland, H. and Parkinson, R.C., "Heat Transfer in Rocket Engines," Advisory Group for Aerospace Research and Development, AGARD-AG-148-71, 1971.
  3. Shi, S., Liang, J., Yi, F. and Fang, G., “Modeling of one-dimensional thermal response of silica-phenolic composites with volume ablation,” Journal of Composite Materials, Vol. 47, No. 18, pp. 2219-2235, 2013. https://doi.org/10.1177/0021998312454907
  4. Bae, J.Y., Song, J.W., Kim, T.W., Hahm, H.C. and Cho, H.H., "Study on the Ablation of Silica-Phenolic Ablator by Numerical Method," KIMST Annual Conference Proceedings, Gyeongju, Korea, pp. 2010-2013, Jun. 2012.
  5. Bae, J.Y., Park, S.K., Kim, T.W., Hahm, H. C., Bae, J.C. and Cho, H.H., "Kinetic Constants Measurement of Silica/Phnenolic Materials," 16th Guided Weapons Conference, Daejon, Korea, pp. 326-330, Sep. 2012.
  6. Yu, M.S., Cho, H.H., Hwang, K.Y. and Bae, J.C., “Hybrid method for jet vane thermal analysis in supersonic nozzle flow,” Journal of Thermophysics and Heat Transfer, Vol. 20, No. 3, pp. 614-617, 2006. https://doi.org/10.2514/1.17675
  7. Seo, S.K., Hahm, H.C. and Kang, Y.G., "Analysis of Boundary layer in Solid Rocket Nozzle and Numerical Analysis for Thermal response of Carbon/Phenolic using Finite Difference Method," 2016 KSPE Fall Conference, Jungsun, Korea, pp. 748-755, Dec. 2016
  8. Bae, J.C., "Analysis Model for the Indepth Thermal Response of Charring Ablators," Agency for Defense Development, ADDR-421-130474, 2013.
  9. Lapp, P. and Quesada, B., "Analysis of Solid Rocket Motor Nozzle," 28th Joint Propulsion Conference and Exhibit, Nashville, T.N., U.S.A., AIAA 92 3616, Jul. 1992.
  10. Boyarintsev, V.I. and Zvyagin, Yu. V., "Turbulent Boundary Layer on Reacting Graphite Surface," 5th Int. Heat Transfer Conference, Tokyo, Japan, pp. 264-268, Sep. 1974.
  11. Levy, D., "Introduction to numerical analysis," Department of Mathematics and Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, M.D., U.S.A., 2010.
  12. Hahm, H.C., “A Study on the Thermal Response Characteristics of Carbon/Carbon Composites for Nozzle Throat Insert,” Journal of the Korean Society of Propulsion Engineers, Vol. 10, No. 1, pp. 30-37, 2006.
  13. McBride, B.J. and Gordon, S., "Computer Program for Calculation of Complex Chemical Equilibrium Composition and Applications, II. Users Manual and Program Description," NASA RP-1311, 1996.
  14. Torii, S. and Yang W.J., “Numerical study on laminarizing gas flow in strongly heated pipe,” International Journal of Heat and Mass Transfer, Vol. 40, No. 13, pp. 3105-3117, 1997. https://doi.org/10.1016/S0017-9310(96)00352-3
  15. Hahm, H.C. and Kang, Y.G., “Comparative Studies of Heat Transfer Coefficients for Rocket Nozzle,” Journal of the Korean Society of Propulsion Engineers, Vol. 16, No. 2, pp. 42-50, 2012. https://doi.org/10.6108/KSPE.2012.16.2.042