DOI QR코드

DOI QR Code

캐비테이션 환경에서의 액체로켓엔진용 산화제펌프의 고주파 신호 분석

High Frequency Signal Analysis of LOx Pump for Liquid Rocket Engine under Cavitating Condition

  • 투고 : 2017.06.03
  • 심사 : 2017.12.11
  • 발행 : 2018.08.01

초록

액체로켓엔진용 산화제펌프의 캐비테이션 시험 중 입출구 배관과 펌프 케이싱에서 계측된 고주파 신호를 분석하였다. 각각의 데이터의 RMS 값을 캐비테이션 수에 따라 표현하였다. 또한 회전수 동기 주파수와 날개 개수 성분, 캐비테이션 불안정성 주파수의 크기를 검토하였다. 입출구 배관의 압력섭동은 캐비테이션 불안정성의 영향을 받았다. 출구 배관의 신호에서는 인듀서 날개 주파수인 3x 성분이 탁월하였다. 이러한 현상은 임펠러의 날개 개수가 인듀서의 날개 개수의 배수인 것과 관계가 있는 것으로 추정된다. 케이싱에 부착된 가속도계에서도 캐비테이션 불안정성 주파수가 확인되었다.

High-frequency signals are analyzed at the inlet/outlet pipeline and pump casing during cavitation tests of the LOx pump for liquid rocket engines. Root-mean square values of all data are investigated with respect to cavitation number. The values of synchronous, harmonic, and cavitation instability frequencies are also calculated. Pressure pulsations of the inlet and outlet pipelines are affected by cavitation instabilities. The 3x component (i.e., the blade-passing frequency of the inducer) is predominant in the outlet pulsation sensor. This seems to be related to the fact that the number of impeller blades is a multiple of the number of the inducer blades. The cavitation instability is also measured at the accelerometer of the pump casing.

키워드

참고문헌

  1. Kamijo, K., "Experiences in the Development of Japanese Rocket Engines," The Japan Society of Mechanical Engineers, Vol. 106, No. 1013, pp. 286-288, 2003. https://doi.org/10.1299/jsmemag.106.1013_286
  2. Lee, Y.H., "Experiences in the Development of Japanese Rocket Engines," The KSFM Journal of Fluid Machinery, Vol. 6, No. 4, pp. 111-114, 2003. https://doi.org/10.5293/KFMA.2003.6.1.111
  3. Hashimoto, T., Yoshida, M., Watanabe, M., Kamijo, K. and Tsujimoto, Y., “Experimental Study of Rotating Cavitation of Rocket Propellant Pump Inducers,” AIAA Journal of Propulsion and Power, Vol. 13, No. 4, pp. 488-494, 1997. https://doi.org/10.2514/2.5210
  4. Ryan, R.S. and Gross, L.A., "Developmental Problems and Their Solution for the Space Shuttle Main Engine Alternate Liquid Oxygen High-pressure Turbopump," NASA Technical Paper, 3533, 1995.
  5. Tsujimoto, Y. and Semenov, Y.A., "New Types of Cavitation Instabilities in Inducers," Space Launcher Liquid Propulsion: 4th International Conference on Space Launcher Technology, Liege, Belgium, Dec. 2002.
  6. Kim, D.J., Hong, S.S., Choi, C.H. and Kim, J., “Water Tests of Lox Pump for 75-ton Class Liquid Rocket Engine,” Aerospace Engineering and Technology, Vol. 10, No. 1, pp. 122-128, 2011.
  7. Kim, D.J., Choi, C.H. and Kim, J., "Cavitation Instabilities of LOX Pump for KSLV-II," Proceedings of 2016 Summer Conference of Korean Society for Fluid Machinery, Busan, Korea, Jul. 2016.
  8. Kim, D.J., Choi, C.H. and Kim, J., "Cavitation Instabilities of Fuel Pump for KSLV-II," Proceedings of 2016 Summer Conference of Korean Society for Fluid Machinery, Busan, Korea, Jul. 2016.
  9. Tani, N., Yamanishi, N. and Tsujimoto, Y., "Influence of Flow Coefficient and Flow Structure on Rotational Cavitation in Inducer," ASME Journal of Fluids Engineering, Vol. 134, No. 2, paper 021302, 2012. https://doi.org/10.1115/1.4005903
  10. Zoladz, T., "Observations on Rotating Cavitation and Cavitation Surge From the Development of the FASTRAC Engine Turbopump," Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Las Vegas, N.V., U.S.A., AIAA-2000-3403, Jul. 2000.
  11. Hong, S. and Choi, C., "Experimental Study on Cavitation Instabilities of Small Turbopump for Rocket Engine," Transactions of the Japan Society of Aeronautical and Space Science, Vol. 60, No. 4, pp. 230-234, 2017. https://doi.org/10.2322/tjsass.60.230