DOI QR코드

DOI QR Code

Smart Warehouse Management System Utilizing IoT-based Autonomous Mobile Robot for SME Manufacturing Factory

중소제조기업을 위한 IoT기반의 자율이동모듈을 활용한 스마트 창고관리 시스템 개발

  • 김정아 (성균관대학교 스마트팩토리융합학과) ;
  • 정종필 (성균관대학교 스마트팩토리융합학과)
  • Received : 2018.06.27
  • Accepted : 2018.10.05
  • Published : 2018.10.31

Abstract

The Smart Factory level of manufacturing factories of SMEs now lacks a system for grasping the accurate inventory amount associated with inventory movements in managing warehouses at the basic level. Also, it is difficult to manage accurate materials for loss of data due to worker manual work and production method due to experience. In order to solve this problem, in this paper, automatic acquisition of inventory to minimize manual work to grasp workers' Inventory and improve automation is done. In the smart warehouse management system using the IoT-based autonomous mobile module, the autonomous mobile module acquires the data of the inventory storage while moving through the line. In order to grasp the material of the Inventory storage, The Camera module recognizes the name of the inventory storage. And Then, If output matches, the data measured by the sensor is transferred to the server. This data can be processed, saved in a database, and real-time inventory quantity and location can be grasped in a web-based monitoring environment for administrators. The Real-time Automatic Inventory (RAIC) systems is reduce manual tasks and expect the effects of automated inventory management systems.

중소기업 제조공장의 스마트팩토리 수준이 현재에는 기초 수준으로 창고를 관리하기 위해 재고 입출입에 따른 정확한 재고량을 파악하는 시스템이 부족하다. 또한 근로자 수작업과 경험에 의한 생산방식으로 데이터 손실로 정확한 자재를 관리하기 어려운 상황이다. 이를 해결하기 위해 근로자의 재고 파악을 위한 수작업을 최소화하며 자동화를 향상시키기 위해 재고량 자동 수집을 진행한다. 본 논문에서는 IoT기반의 자율이동모듈을 이용한 스마트 창고관리 시스템으로 자율이동모듈이 창고를 이동하면서 재고 보관함의 데이터를 수집한다. 이는 해당 보관함의 자재들 파악하기 위해 카메라 모듈이 비전처리 방식 통해 재고보관함의 네임텍을 인지한다. 인지한 문자화 처리 결과가 일치할 때 센서에 의해 측정된 데이터가 서버로 전달되고 데이터를 처리하여 데이터베이스에 저장한다. 저장된 데이터는 관리자용 웹 기반 모니터링 환경에서 실시간 재고량을 파악할 수 있다. 이를 통해 수작업을 줄이고 자동화된 재고관리시스템의 효과를 기대한다.

Keywords

References

  1. Hugh Boyes, Bil Hallaq, Joe Cunningham, and Tim Watson, "The industrial internet of things (IIoT): An analysis framework Computers in Industry", Vol. 101, pp.1-12, 2018, https://doi.org/10.1016/j.compind.2018.04.015.
  2. Jae-Young Chang, "An Experimental Evaluation of Box office Revenue Prediction through Social Bigdata Analysis and Machine Learning", The Journal of The Institute of Internet, Broadcasting and Communication (IIBC), Vol. 17, No. 3, pp.167-173, Jun. 30, 2017. https://doi.org/10.7236/JIIBC.2017.17.3.167
  3. Jeong-A Kim, Jongpil Jeong, Tae-hyun Lee, and Sangmin Bae, "Effectiveness Evaluation of Demand Forecasting Based Inventory Management Model for SME Manufacturing Factory", The Journal of The Institute of Internet, Broadcasting and Communication (IIBC), Vol. 18, No. 2, pp.197-207, Apr. 30, 2018. https://doi.org/10.7236/JIIBC.2018.18.2.197
  4. J. W. Kim, S. H. Sul, J. B. Choi. "Development of unmanned remote smart rescue platform applying Internet of Things technology", International Journal of Distributed Sensor Networks, Vol. 14, No. 6, pp.1-14, 2018.
  5. Min-soo Kang, Chunhwa Ihm, Jaeyeon Lee, Eun-Hye Choi, and Sang Kwang Lee, "A Study on Object Recognition for Safe Operation of Hospital Logistics Robot Based on IoT", The Journal of The Institute of Internet, Broadcasting and Communication (IIBC), Vol. 17, No. 2, pp.141-146, Apr. 30, 2017. https://doi.org/10.7236/JIIBC.2017.17.2.141
  6. Zhe Yuan, Yeming(Yale) Gong, "Improving the Speed Delivery for Robotic Warehouses", This research is supported by China Scholarship Council and Chutian Scholarship. IFACPapersOnLine, Vol 49, NO, 12, pp. 1164-1168, 2016. https://doi.org/10.1016/j.ifacol.2016.07.661
  7. Shu-Jing Zhang1, Lei-Zhang1, and Ri Gao, "Research on Visual Image Processing of Mobile Robot Based on OpenCV", Journal of Computers Vol. 28, No. 5, pp. 255-275, 2017. https://doi:10.3966/199115992017102805023
  8. M. Rajesh, Bindhu K. Rajan, Ajay Roy, K. Almaria Thomas, Ancy Thomas, T. Bincy Tharakan, and C. Dinesh, "Text recognition and face detection aid for visually impaired person using Raspberry PI", International Conference on circuits Power and Computing Technologies [ICCPCT], pp .1-5, 2017. doi: 10.1109/ICCPCT.2017.8074355
  9. Giuseppe Guido, Vincenzo Gallelli, Daniele Rogano, and Alessandro Vitale, "Evaluating the accuracy of vehicle tracking data obtained from Unmanned Aerial Vehicles", International Journal of Transportation Science and Technology, Vol. 5, No.3, pp.136-151,2016. https://doi.org/10.1016/j.ijtst.2016.12.001.
  10. Amit Dhomne, Ranjit Kumar and Vijay Bhan, "Gender Recognition Through Face Using Deep Learning", Procedia Computer Science, Vol. 132, pp. 2-10, 2018. https://doi.org/10.1016/j.procs.2018.05.053
  11. Binbin Yong, Zijian Xu, Xin Wang, Libin Cheng, Xue Li, Xiang Wu, and Qingguo Zhou, "IoT-based intelligent fitness system", Journal of Parallel and Distributed Computing, Vol. 118, No 1, pp. 14-21, 2018. https://doi.org/10.1016/j.jpdc.2017.05.006.
  12. Saleh Alyahya, Qian Wang, and Nick Bennett, "Application and integration of an RFID-enabled warehousing management system - a feasibility study", Journal of Industrial Information ntegration, Vol. 4, pp. 15-25, 2016. https://doi.org/10.1016/j.jii.2016.08.001
  13. Zongguo Wen, Shuhan Hu, Djavan De Clercq, M. Bruce Beck, Hua Zhang, Huanan Zhang, Fan Fei, and Jianguo Liu, "Design, implementation, and evaluation of an Internet of Things (IoT) network system for restaurant food waste management", Waste Management, Vol 73, pp. 26-38, 2018. https://doi.org/10.1016/j.wasman.2017.11.054.
  14. Jasleen Kaur, Pankaj Deep Kaur, "CE-GMS: A cloud IoT-enabled grocery management system", Electronic Commerce Research and Applications, Vol. 28, pp. 63-72, 2018. https://doi.org/10.1016/j.elerap.2018.01.005.