References
- Hanson RS, Hanson TE. 1996. Methanotrophic bacteria. Microbiol. Rev. 60: 439-471.
- Semrau JD, DiSpirito AA, Yoon S. 2010. Methanotrophs and copper. FEMS Microbiol. Rev. 34: 496-531. https://doi.org/10.1111/j.1574-6976.2010.00212.x
- Fox BG, Borneman JG, Wackett LP, Lipscomb JD. 1990. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29: 6419-6427. https://doi.org/10.1021/bi00479a013
- Burrows KJ, Cornish A, Scott D, Higgins IJ. 1984. Substrate specificities of the soluble and particulate methane mono-oxygenases of Methylosinus trichosporium OB3b. Microbiology 130: 3327-3333. https://doi.org/10.1099/00221287-130-12-3327
- Colby J, Stirling DI, Dalton H. 1977. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem. J. 165: 395-402. https://doi.org/10.1042/bj1650395
- Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, et al. 2010. Methanotrophs: Multifunctional bacteria with promising applications in environmental bioengineering. Biochem. Eng. J. 49: 277-288. https://doi.org/10.1016/j.bej.2010.01.003
- Huber-Humer M, Gebert J, Hilger H. 2008. Biotic systems to mitigate landfill methane emissions. Waste Manag. Res. 26: 33-46. https://doi.org/10.1177/0734242X07087977
- Dedysh SN, Knief C, Dunfield PF. 2005. Methylocella species are facultatively methanotrophic. J. Bacteriol. 187: 4665-4670. https://doi.org/10.1128/JB.187.13.4665-4670.2005
- Knief C. 2015. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol. 6: 1346.
- Petersen JM, Dubilier N. 2009. Methanotrophic symbioses in marine invertebrates. Environ. Microbiol. Rep. 1: 319-335. https://doi.org/10.1111/j.1758-2229.2009.00081.x
- Murase J, Frenzel P. 2008. Selective grazing of methanotrophs by protozoa in a rice field soil. FEMS Microbiol. Ecol. 65: 408-414. https://doi.org/10.1111/j.1574-6941.2008.00511.x
- Kip N, Van Winden JF, Pan Y, Bodrossy L, Reichart G-J, Smolders AJ, et al. 2010. Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat. Geosci. 3: 617-621. https://doi.org/10.1038/ngeo939
- Raghoebarsing AA, Smolders AJP, Schmid MC, Rijpstra WIC, Wolters-Arts M, Derksen J, et al. 2005. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436: 1153-1156. https://doi.org/10.1038/nature03802
- Van der Ha D, Bundervoet B, Verstraete W, Boon N. 2011. A sustainable, carbon neutral methane oxidation by a partnership of methane oxidizing communities and microalgae. Water Res. 45: 2845-2854. https://doi.org/10.1016/j.watres.2011.03.005
- Gonzalez JM, Sherr EB, Sherr BF. 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. Environ. Microbiol. 56: 583-589.
- Atlas RM, Bartha R. 1997. Microbial ecology: fundamentals and applications, pp. 4 Ed. Benjamin/Cummings Science Publishing, Melon Park.
- Iguchi H, Yurimoto H, Sakai Y. 2011. Stimulation of methanotrophic growth in cocultures by cobalamin excreted by rhizobia. Appl. Environ. Microbiol. 77: 8509-8515. https://doi.org/10.1128/AEM.05834-11
- Stock M, Hoefman S, Kerckhof F-M, Boon N, De Vos P, De Baets B, et al. 2013. Exploration and prediction of interactions between methanotrophs and heterotrophs. Res. Microbiol. 164: 1045-1054. https://doi.org/10.1016/j.resmic.2013.08.006
- Hrsak D, Begonja A. 1998. Growth characteristics and metabolic activities of the methanotrophic-heterotrophic groundwater community. J. Appl. Microbiol. 85: 448-456. https://doi.org/10.1046/j.1365-2672.1998.853505.x
- Wilkinson TG, Topiwala H, Hamer G. 1974. Interactions in a mixed bacterial population growing on methane in continuous culture. Biotechnol. Bioeng. 16: 41-59. https://doi.org/10.1002/bit.260160105
- Jeong S-Y, Cho K-S, Kim TG. 2014. Density-dependent enhancement of methane oxidation activity and growth of methylocystis sp. by a non-methanotrophic bacterium Sphingopyxis sp. Biotechnol. Rep. 4: 128-133. https://doi.org/10.1016/j.btre.2014.09.007
- Whittenbury R, Phillips KC, Wilkinson JF. 1970. Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61: 205-218. https://doi.org/10.1099/00221287-61-2-205
- Lee E-H, Yi T, Moon K-E, Park H, Ryu HW, Cho K-S. 2011. Characterization of methane oxidation by a methanotroph isolated from a landfill cover soil, south Korea. J. Microbiol. Biotechnol. 21: 753-756. https://doi.org/10.4014/jmb.1102.01055
- Lee E-H, Park H, Cho K-S. 2010. Characterization of methane, benzene and toluene-oxidizing consortia enriched from landfill and riparian wetland soils. J. Hazard. Mater. 184: 313-320. https://doi.org/10.1016/j.jhazmat.2010.08.038
- Kim TG, Yi T, Lee E-H, Ryu HW, Cho K-S. 2012. Characterization of a methane-oxidizing biofilm using microarray, and confocal microscopy with image and geostatic analyses. Appl. Microbiol. Biotech. 95: 1051-1059. https://doi.org/10.1007/s00253-011-3728-y
- Kim TG, Jeong S-Y, Cho K-S. 2015. Development of droplet digital PCR assays for methanogenic taxa and examination of methanogen communities in full-scale anaerobic digesters. Appl. Microbiol. Biotech. 99: 445-458. https://doi.org/10.1007/s00253-014-6007-x
- Kim TG, Jeong S-Y, Cho K-S. 2014. Comparison of droplet digital PCR and quantitative real-time PCR for examining population dynamics of bacteria in soil. Appl. Microbiol. Biotech. 98: 6105-6113. https://doi.org/10.1007/s00253-014-5794-4
- Chen Z, Potempa J, Polanowski A, Wikstrom M, Travis J. 1992. Purification and characterization of a 50-kDa cysteine proteinase (gingipain) from Porphyromonas gingivalis. J. Biol. Chem. 267: 18896-18901.
- Xing X-H, Wu H, Luo M-F, Wang B-P. 2006. Effects of organic chemicals on growth of Methylosinus trichosporium OB3b. Biochem. Eng. J. 31: 113-117. https://doi.org/10.1016/j.bej.2006.06.001
- Manickam N, Mau M, Schlomann M. 2006. Characterization of the novel HCH-degrading strain, Microbacterium sp. ITRC1. Appl. Microbiol. Biotech. 69: 580-588. https://doi.org/10.1007/s00253-005-0162-z
- Sheng X, He L, Zhou L, Shen Y. 2009. Characterization of Microbacterium sp. F10a and its role in polycyclic aromatic hydrocarbon removal in low-temperature soil. Can. J. Microbiol. 55: 529-535. https://doi.org/10.1139/W09-005
- Chen J-A, Li X, Li J, Cao J, Qiu Z, Zhao Q, et al. 2007. Degradation of environmental endocrine disruptor di-2-ethylhexyl phthalate by a newly discovered bacterium, Microbacterium sp. strain CQ0110Y. Appl. Microbiol. Biotech. 74: 676-682. https://doi.org/10.1007/s00253-006-0700-3
- Ho A, De Roy K, Thas O, De Neve J, Hoefman S, Vandamme P, et al. 2014. The more, the merrier: heterotroph richness stimulates methanotrophic activity. ISME J. 8: 1945-1948. https://doi.org/10.1038/ismej.2014.74
- Kim TG, Yi T, Yun J, Ryu HW, Cho K-S. 2013. Biodegradation capacity utilization as a new index for evaluating biodegradation rate of methane. J. Microbiol. Biotechnol. 23: 715-718. https://doi.org/10.4014/jmb.1211.11018
- Dianou D, Adachi K. 1999. Characterization of methanotrophic bacteria isolated from a subtropical paddy field. FEMS Microbiol. Lett. 173: 163-173. https://doi.org/10.1111/j.1574-6968.1999.tb13498.x
- Schroeckh V, Scherlach K, Nützmann H-W, Shelest E, Schmidt-Heck W, Schuemann J, et al. 2009. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 106: 14558-14563. https://doi.org/10.1073/pnas.0901870106
- Veraart A, Garbeva P, Beersum F, Ho A, Hordijk C, Meima-Franke M, et al. 2018. Living apart together-bacterial volatiles influence methanotrophic growth and activity. ISME J. 12: 1163-1166. https://doi.org/10.1038/s41396-018-0055-7
- Kankaala P, Huotari J, Peltomaa E, Saloranta T, Ojala A. 2006. Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake. Limnol. Oceanogr. 51: 1195-1204. https://doi.org/10.4319/lo.2006.51.2.1195
- Samuels GJ. 1996. Trichoderma: a review of biology and systematics of the genus. Mycological Research. 8: 923-935.
- Stolp H. 1973. The bdellovibrios: Bacterial parasites of bacteria. Annu. Rev. Phytopathol. 11: 53-76. https://doi.org/10.1146/annurev.py.11.090173.000413