DOI QR코드

DOI QR Code

Fusarium mangiferae as New Cell Factories for Producing Silver Nanoparticles

  • Hamzah, Haider M. (Department of Biology, College of Science, University of Sulaimani) ;
  • Salah, Reyam F. (Department of Biology, College of Science, Tikrit University) ;
  • Maroof, Mohammed N. (Department of Biology, College of Education for Pure Sciences, Tikrit University)
  • Received : 2018.06.14
  • Accepted : 2018.08.29
  • Published : 2018.10.28

Abstract

Finding a safe and broad-spectrum medication is a goal of scientists, pharmacists, and physicians, but developing and fabricating the right medicine can be challenging. The current study describes the formation of silver nanoparticles (AgNPs) by Fusarium mangiferae. It involves the antibiofilm activity of the nanoparticles against Staphylococcus aureus. It also involves cytotoxic effect against mammalian cell lines. Well-dispersed nanoparticles are formed by F. mangiferae. The sizes of the nanoparticles were found to range from 25 to 52 nm, and UV-Vis scan showed absorption around 416-420 nm. SEM, TEM, and AFM results displayed spherical and oval shapes. Furthermore, the FTIR histogram detected amide I and amide II compounds responsible for the stability of AgNPs in an aqueous solution. AgNPs were observed to decrease the formation of biofilm at 75% (v/v). DNA reducing, smearing, and perhaps fragmentation were noticed after treating the bacterial cells with 50% (v/v). Additionally, cell lysis was detected releasing proteins in the supernatant. It was also observed that the AgNPs have the ability to cause 59% cervical cancer cell line (HeLa) deaths at 25% (v/v), however, they showed about 31% toxicity against rat embryo fibroblast transformed cell lines (REF). The results of this study prove the efficiency of AgNPs as an antibiofilm against S. aureus, suggesting that AgNPs could be an alternative to antibiotics. It must also be emphasized that AgNPs displayed cytotoxic behavior against mammalian cell lines. Further studies are needed for assessing risk in relation to the possible benefit of prescribing AgNPs.

Keywords

References

  1. Ahmed AA, Hamzah HM, Maaroof MN. 2018. Analyzing formation of silver nanoparticles from the filamentous fungus Fusarium oxysporum and their antimicrobial activity. Turk. J. Biol. 42: 54-62. https://doi.org/10.3906/biy-1710-2
  2. Miller JK, Neubig R, Clemons CB, Kreider KL, Wilber JP, Young GW, et al. 2013. Nanoparticle deposition onto biofilms. Ann. Biomed. Eng. 41: 53-67. https://doi.org/10.1007/s10439-012-0626-0
  3. Radzig MA, Nadtochenko VA, Koksharova OA, Kiwi J, Lipasova VA, Khmel IA. 2013. Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids Surf. B Biointerfaces 102: 300-306. https://doi.org/10.1016/j.colsurfb.2012.07.039
  4. Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318-1322. https://doi.org/10.1126/science.284.5418.1318
  5. Syed MA, Babar S, Bhatti AS, Bokhari H. 2009. Antibacterial effects of silver nanoparticles on the bacterial strains isolated from catheterized urinary tract infection cases. J. Biomed. Nanotechnol. 5: 209-214. https://doi.org/10.1166/jbn.2009.1020
  6. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M. 2015. Silver nanoparticles as potential antibacterial agents. Molecules 20: 8856-8874. https://doi.org/10.3390/molecules20058856
  7. Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. 2011. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2: 445-459. https://doi.org/10.4161/viru.2.5.17724
  8. Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, et al. 2004. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25: 4383-4391. https://doi.org/10.1016/j.biomaterials.2003.10.078
  9. Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. 2015. Alternative antimicrobial approach: nano-antimicrobial materials. J. Evid. Based Complementary Altern. Med. 2015: 246012.
  10. Prabhu S, Poulose EK. 2012. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano. Lett. 2: 32. https://doi.org/10.1186/2228-5326-2-32
  11. Hwang IS, Hwang JH, Choi H, Kim KJ, Lee DG. 2012 . Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J. Med. Microbiol. 61: 1719-1726. https://doi.org/10.1099/jmm.0.047100-0
  12. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52: 662-668. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  13. Salaheldin TA, Husseiny SM, Al-Enizi AM, Elzatahry A, Cowley AH. 2016. Evaluation of the cytotoxic behavior of fungal extracellular synthesized Ag nanoparticles using confocal laser scanning microscope. Int. J. Mol. Sci. 17: 329. https://doi.org/10.3390/ijms17030329
  14. Sriram MI, Kanth SBM, Kalishwaralal K, Gurunathan S. 2010. Antitumor activity of silver nanoparticles in Dalton's lymphoma ascites tumor model. Int. J. Nanomedicine. 5: 753-762.
  15. Arora S, Tyagi N, Bhardwaj A, Rusu L, Palanki R, Vig K, et al. 2015. Silver nanoparticles protect human keratinocytes against UVB radiation-induced DNA damage and apoptosis: potential for prevention of skin carcinogenesis. Nanomedicine 11: 1265-1275. https://doi.org/10.1016/j.nano.2015.02.024
  16. Stensberg MC, Wei Q, McLamore ES, Porterfield DM, Wei A, Sepulveda MS. 2011. Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine 6: 879-898. https://doi.org/10.2217/nnm.11.78
  17. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 19: 975-983. https://doi.org/10.1016/j.tiv.2005.06.034
  18. Almofti MR, Ichikawa T, Yamashita K, Terada H, Shinohara Y. 2003. Silver ion induces a cyclosporine a-insensitive permeability transition in rat liver mitochondria and release of apoptogenic cytochrome C. J. Biochem. 134: 43-49. https://doi.org/10.1093/jb/mvg111
  19. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, et al. 2008. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B 112: 13608-13619. https://doi.org/10.1021/jp712087m
  20. Soni N, Prakash S. 2012. Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol. Res. 110: 175-184. https://doi.org/10.1007/s00436-011-2467-4
  21. Mishra A, Tripathy SK, Yun SI. 2011. Bio-synthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. J. Nanosci. Nanotechnol. 11: 243-248. https://doi.org/10.1166/jnn.2011.3265
  22. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, et al. 2003. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces 28: 313-318. https://doi.org/10.1016/S0927-7765(02)00174-1
  23. Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M. 2008. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr. Nanosci. 4: 141-144. https://doi.org/10.2174/157341308784340804
  24. Dasaratrao Sawle B, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A. 2008. Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci. Technol. Adv. Mater. 9: 035012. https://doi.org/10.1088/1468-6996/9/3/035012
  25. Ingle A, Rai M, Gade A, Bawaskar M. 2009. Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J. Nanopart. Res. 11: 2079-2085. https://doi.org/10.1007/s11051-008-9573-y
  26. Bawaskar M, Gaikwad S, Ingle A, Rathod D, Gade A, Duran N, et al. 2010. A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum. Curr. Nanosci. 6: 376-380. https://doi.org/10.2174/157341310791658919
  27. Gaikwad SC, Birla SS, Ingle AP, Gade AK, Marcato PD, Rai M, et al. 2013. Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J. Braz. Chem. Soc. 24: 1974-1982.
  28. Gamliel-Atinsky E, Sztejnberg A, Maymon M, Vintal H, Shtienberg D, Freeman S. 2009. Infection dynamics of Fusarium mangiferae, causal agent of mango malformation disease. Phytopathology 99: 775-781. https://doi.org/10.1094/PHYTO-99-6-0775
  29. Omar NH, Mohd M, Nor NM, Zakaria L. 2018. Characterization and pathogenicity of Fusarium species associated with leaf spot of mango (Mangifera indica L.). Microb. Pathog. 114: 362-368. https://doi.org/10.1016/j.micpath.2017.12.026
  30. Kaiser TD, Pereira EM, dos Santos KR, Maciel EL, Schuenck RP, Nunes AP. 2013. Modification of the Congo red agar method to detect biofilm production by Staphylococcus epidermidis. Diagn. Microbiol. Infect. Dis. 75: 235-239. https://doi.org/10.1016/j.diagmicrobio.2012.11.014
  31. Mathur T, Singhal S, Khan S, Upadhyay DJ, Fatma T, Rattan A. 2006. Detection of biofilm formation among the clinical isolates of staphylococci: an evaluation of three different screening methods. Indian J. Med. Microbiol. 24: 25-29. https://doi.org/10.4103/0255-0857.19890
  32. Kim SH, Lee HS, Ryu DS, Choi SJ, Lee DS. 2011. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J. Microbiol. Biotechnol. 39: 77-85.
  33. Thottappilly G, Mignouna HD, Onasanya A, Abang M, Oyelakin O, Singh NK. 1999. Identification and differentiation of isolates of Colletotrichum gloeosporioides from yam by random amplified polymorphic DNA markers. Afr. Crop Sci. J. 7: 195-205.
  34. Onasanya A, Mignouna HD, Thottappilly G. 2003. Genetic fingerprinting and phylogenetic diversity of Staphylococcus aureus isolates from Nigeria. Afr. J. Biotechnol. 2: 246-250. https://doi.org/10.5897/AJB2003.000-1051
  35. Betancur-Galvis LA, Saez J, Granados H, Salazar A, Ossa JE. 1999. Antitumor and antiviral activity of Colombian medicinal plant extracts. Mem. Inst. Oswaldo Cruz. 94: 531-535. https://doi.org/10.1590/S0074-02761999000400019
  36. Mather JP, Roberts PE. 1998. Introduction to Cell and Tissue Culture: Theory and Technique. pp 180-181. Plenum Press, New York.
  37. Duran N, Marcato PD, Alves OL, De Souza GIH, Esposito E. 2005. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotech. 3: 8. https://doi.org/10.1186/1477-3155-3-8
  38. Gurunathan S, Jeong JK, Han JW, Zhang XF, Park JH, Kim JH. 2015. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res. Lett. 10: 35. https://doi.org/10.1186/s11671-015-0747-0
  39. Rodriguez-Leon E, Iniguez-Palomares R, Navarro RE, Herrera-Urbina R, Tanori J, Iniguez-Palomares C, et al. 2013. Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res. Lett. 8: 318. https://doi.org/10.1186/1556-276X-8-318
  40. Kumar CM, Yugandhar P, Savithramma N. 2016. Biological synthesis of silver nanoparticles from Adansonia digitata L. fruit pulp extract, characterization, and its antimicrobial properties. J. Intercult. Ethnopharmacol. 5: 79-85. https://doi.org/10.5455/jice.20160124113632
  41. Gopinath PM, Narchonai G, Dhanasekaran D, Ranjani A, Thajuddin N. 2015. Mycosynthesis, characterization and antibacterial properties of AgNPs against multidrug resistant (MDR) bacterial pathogens of female infertility cases. Asian J. Pharm. Sci. 10: 138-145. https://doi.org/10.1016/j.ajps.2014.08.007
  42. Basavaraja SS, Balaji SD, Lagashetty AK, Rajasab AH, Venkataraman A. 2008. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater. Res. Bull. 43: 1164-1170. https://doi.org/10.1016/j.materresbull.2007.06.020
  43. Majeed S, bin Abdullah MS, Nanda A, Ansari MT. 2016. In vitro study of the antibacterial and anticancer activities of silver nanoparticles synthesized from Penicillium brevicompactum (MTCC-1999). J. Taibah Univ. Sci. 10: 614-620. https://doi.org/10.1016/j.jtusci.2016.02.010
  44. Chen M, Yang Z, Wu H, Pan X, Xie X, Wu C. 2011. Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel. Int. J. Nanomedicine. 6: 2873-2877.
  45. Kiem S, Oh WS, Peck KR, Lee NY, Lee JY, Song JH, et al. 2004. Phase variation of biofilm formation in Staphylococcus aureus by IS2 56 insertion and its impact on the capacity adhering to polyurethane surface. J. Korean Med. Sci. 19: 779-782. https://doi.org/10.3346/jkms.2004.19.6.779
  46. Milanov D, Lazic S, Vidic B, Petrovic J, Bugarski D, Seguljev Z. 2010. Slime production and biofilm forming ability by Staphylococcus aureus bovine mastitis isolates. Acta Vet. Brno. 60: 217-226. https://doi.org/10.2298/AVB1003217M
  47. Abdeen SH, Abdeen AM, EI-Enshasy HA, Shereef AAE. 2011. HeLa-S3 cell growth conditions in serum-free medium and adaptability for proliferation in suspension culture. J. Biol. Sci. 11: 124-134. https://doi.org/10.3923/jbs.2011.124.134
  48. Gillet JP, Varma S, Gottesman MM. 2013. The clinical relevance of cancer cell lines. J. J. Natl. Cancer Inst. 105: 452-458. https://doi.org/10.1093/jnci/djt007
  49. Kaba SI, Egorova EM. 2015. In vitro studies of the toxic effects of silver nanoparticles on HeLa and U937 cells. Nanotechnol. Sci Appl. 8: 19-29.
  50. Sambale F, Wagner S, Stahl F, Khaydarov RR, Scheper T, Bahnemann D. 2015. Investigations of the toxic effect of silver nanoparticles on mammalian cell lines. J. Nanomater. 16: 6.

Cited by

  1. Fusarium as a Novel Fungus for the Synthesis of Nanoparticles: Mechanism and Applications vol.7, pp.2, 2021, https://doi.org/10.3390/jof7020139
  2. Fusarium as a Novel Fungus for the Synthesis of Nanoparticles: Mechanism and Applications vol.7, pp.2, 2021, https://doi.org/10.3390/jof7020139