DOI QR코드

DOI QR Code

Fundamental Experiment to Verify the Resolution of Hetero-core Fiber Optic Sensor for the Prestress Measurement

프리스트레스 측정을 위한 헤테로코어 광파이버 센서의 분해능 검증 기초실험

  • Park, Eik-Tae (Department of Civil Engineering, Pukyung National Univ) ;
  • Choi, Kwang-Su (Department of Civil Engineering, Pukyung National Univ) ;
  • Kim, Tae-Yang (Department of Civil Engineering, Pukyung National Univ) ;
  • Lee, Hwan-Woo (Department of Civil Engineering, Pukyung National Univ)
  • Received : 2018.07.12
  • Accepted : 2018.09.27
  • Published : 2018.10.31

Abstract

This is the study for developing the hetero-core optical fiber sensors which are purpose to measure the prestress of PSC bridges during the life cycle period. The goal of this study is to improve the resolution of hetero-core sensors. As a result of the test, it is possible to measure the displacement in $2{\mu}m$ increments. In other words, if the length of the sensor module is 30cm, it is possible to measure the prestress variations in 0.2MPa increments at specified compressive strength of concrete(fck) of 40MPa by Hook's Law. So it can be useful for development of a sensor module measuring internal prestress measurement.

이 실험연구는 PSC 교량의 생애주기 프리스트레스 측정용 헤테로코어 광파이버 센서를 개발하기 위한 선행연구이며, 기존의 헤테로코어 변위센서의 정밀도를 향상하기 위한 실험이다. 실험결과 최대 $2{\mu}m$ 단위의 변위 변화량을 측정할 수 있었다. 즉, 변위측정 길이가 30cm의 센서모듈을 설계했을 때 설계기준압축강도(fck)가 40MPa인 경우 0.2MPa 단위의 응력변화를 측정이 가능함을 확인하였다. 따라서 본 실험의 결과는 향후 진행될 내부매립용 센서모듈 개발에 유용한 자료로 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Bartoli, I., Phillips, R., Scalea, F.L., Salamone, S., Coccia, S., Sikorsky, C.S. (2008) Load Monitoring in Multiwire Strands by Interwire Ultrasonic Measurements, Proc. of SPIE 6932, 693209, pp.1-12.
  2. Chen, H.L., Wissawapaisal, K. (2001) Measurement of Tensile Forces in a Seven-Wire Prestressing Strand using Stress Waves, J. Eng. Mech., 127(6), pp.599-606. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:6(599)
  3. Goh, L.S., Kumekawa, N, Watanabe, K., Shinomiya, N. (2014) Hetero-core Spliced Optical Fiber SPR Sensor System for Soil Gravity Water Monitoring in Agricultural Environments, Comput. & Electron. Agric. 101. pp.110-117. https://doi.org/10.1016/j.compag.2013.12.008
  4. Grattan, K.T.V., Sun, T. (2000) Fiber Optic Sensor Technology: An Overview, Sens. & Actuators A: Physical, 82, pp.40-61. https://doi.org/10.1016/S0924-4247(99)00368-4
  5. Idriss, R.L. (2001) Monitoring of a High Performance Prestressed Concrete Bridge with Embedded Optical Fiber Sensors during Fabrication, Construction and Service, Proceedings of the 9th International Conference Structural Faults Repair, London, England.
  6. Inaudi, D. (1994) Low-Coherence Deformation Sensors for the Monitoring of Civil Engineering Structures, Sens. & Actuators A, 44, pp.125-130. https://doi.org/10.1016/0924-4247(94)00797-7
  7. Kim, H.W., Kim, J.M., Choi, S.Y., Park, S.Y., Lee, H.W. (2015) Long Term Monitoring of Prestressing Tension Force in Post-Tension UHPC Bridge using Fiber Optical FBG Sensor, J. Comput. Struct. Eng. Inst. Korea, 28(6), pp.699-706. https://doi.org/10.7734/COSEIK.2015.28.6.699
  8. Kim, Y.B., Lee, K.S., Watanabe, K., Sasaki, H., Choi, Y.W. (2007) Hetero-core Spliced Fiber Optical Sensing System for an Environment Monitoring, J. Ocean Eng. & Technol., 21(3), pp.46-51.
  9. Koyama, Y., Watanabe, K. (2014) Perceptive Sportswear System with Auditory Feedback Based on Hetero-core Optical Fiber for Running Motion Support, Procedia Eng., 87, pp.552-555. https://doi.org/10.1016/j.proeng.2014.11.547
  10. Lee, J.H. (2015) Prestressed Concrete Strength Design and Limit State Design, Dong Myeong Publishers, pp.6-11.
  11. Lee, S.C., Choi, S.Y., Shin, K.J., Kim, J.M., Lee, H.W. (2015) Measurement of Transfer Length for a Seven-Wire Strand with FBG Sensors, J. Comput. Struct. Eng. Inst. Korea, 28(6), pp.707-714. 2015. https://doi.org/10.7734/COSEIK.2015.28.6.707
  12. Maaskant, R., Alavie, T., Measures, R.M., Tadros, G., Rizkalla, S.H., Guha-Thakurta, A. (1997) Fiber-Optic Bragg Grating Sensors for Bridge Monitoring, Cement & Concr. Compos., 19, pp.21-33. https://doi.org/10.1016/S0958-9465(96)00040-6
  13. Measures, R.M., Alavie, A.T., Maaskant, R., Ohn, M., Karr, S., Huang, S. (1994) Bragg Grating Structural Sensing System for Bridge Monitoring, Proc SPIE 1994;2294, pp.53-60.
  14. Nishiyama, M., Sonobe, M. Watanabe, K. (2016) Unconstrained Pulse Pressure Sensing for Health Management based on a Hetero-core Fiber Optic Sensor, Biomed Opt Express, 7(9), pp.3675-3685. https://doi.org/10.1364/BOE.7.003675
  15. Otsuka, Y., Koyama, Y., Watanabe, K. (2014) Monitoring of Plantar Pressure in Gait based on Hetero-core Optical Fiber Sensor, Procedia Eng., 87, pp.1465-1468. https://doi.org/10.1016/j.proeng.2014.11.726
  16. Roller, J.J., Russell, H.G., Brucr Jr, R.N., Alaywan, W.R. (2011) Evaluation of Prestress Losses in High-strength Concrete Bulb-tee Girders for the Rigolets Pass Bridge, PCI J., 56(1), pp.110-134. https://doi.org/10.15554/pcij.01012011.110.134
  17. Seki, A., Katakura, H., Kai, T., Iga. M., Watanabe, K. (2007) A Hetero-core Structured Fiber Optic pH Sensor, Anal. Chim. Acta, 582(1), pp.154-157. https://doi.org/10.1016/j.aca.2006.08.061
  18. Sumitro, S., Hida, K., Diouron, T.Le. (2003) Structural Health Monitoring Paradigm for Concrete Structures, 28th Conference on Our World in Concrete & Structures: 28-29, Singapore.
  19. Wang, M.L., Chen, Z. (2000) Magneto-Elastic Permeabitilty Measurement for Stress Monitoring in Steel Tendons and Cables, Proc. of the SPIE 7th Annual Symposium on Smart Structures and Materials, Health Monitoring of the Highway Transportation Infrastructure, 3995, pp.492-500.