DOI QR코드

DOI QR Code

Fiber-optic Communications - Historical Perspectives and Future Directions

광통신의 발전 과정 및 향후 전망

  • 정윤철 (한국과학기술원 전기 및 전자공학부)
  • Received : 2018.08.30
  • Accepted : 2018.09.06
  • Published : 2018.10.25

Abstract

This paper reviews the progress achieved in the field of fiber-optic communications during the last 40 years, and discusses its future directions. In particular, the highlights and milestones in the development of the high-capacity fiber-optic transmission system are presented in historical perspective.

본 논문에서는 지난 40여 년간 이룩된 광통신 기술의 눈부신 발전 과정을 되돌아보고 예상되는 향후 발전 방향에 대하여 기술하였다. 특히, 초고속 대용량 광전송 시스템의 발전 과정에서 핵심적인 역할을 수행한 기술들을 역사적 관점에서 정리하였다. 본 논문은 광통신 분야에 새로이 입문하는 젊은 공학도들을 위하여 작성된 것이다.

Keywords

References

  1. "The top 10 inventions of the 20th century," Act for Libraries (http://www.actforlibraries.org/the-top-10-inventions-of-the-20th-century/).
  2. "Greatest engineering achievements of the 20th century," National Academy of Engineering, (http://www.greatachievements.org/).
  3. "20th Century Technology," Time Magazine, (http://content.time.com/time/photogallery/0,29307,2026224,00.html).
  4. "A world transformed: what are the top 30 innovations of the last 30 years?," Knowledge@Wharton, Feb. 18, 2009 (http://knowledge.wharton.upenn.edu).
  5. "15 influential Innovations of the Past 50 Years," CNBC, (https://www.cnbc.com/2011/09/19/15-Influential-Innovations-of-the-Past-50-Years.html?slide=5).
  6. J. Hecht, "City of light: the story of fiber optics," Oxford University Press (April 2004).
  7. "Alcatel-Lucent unveils single-carrier 100G/200G DWDM optical line card," Lightwave (Sept. 24, 2014).
  8. G. Stix, "The triumph of the light," Scientific American (Jan. 2001), Vol. 284, No. 1, pp. 80-86. https://doi.org/10.1038/scientificamerican0101-80
  9. A. R. Chraplyvy, "The coming capacity crunch," Proc. ECOC, plenary talk (Sept. 2009).
  10. Cisco, "The zettabyte era: Trends and analysis," white paper (June 7, 2017).
  11. G. Kizer, "Digital microwave communication: Engineering point-to-point microwave systems," Wiley-IEEE Press (June 2013).
  12. G. J. Mullet, "Wireless telecommunications systems and networks," Thomson Delmar Learning (Sept. 2005).
  13. R. M. Jansen and R. C. Prime, "TH-3 microwave radio system: system considerations," Bell Syst. Tech. J. 50, 2085-2116 (1971). https://doi.org/10.1002/j.1538-7305.1971.tb02596.x
  14. D. A. Alsberg, J. C. Bankert, and P. T. Hutchison, "The WT4/WT4A millimeter-wave transmission system," Bell Syst. Tech. J. 56, 1829-1848 (1977). https://doi.org/10.1002/j.1538-7305.1977.tb00158.x
  15. W. D. Warters, "Millimeter waveguide scores high in field test," Bell Laboratories Record (Nov. 1975), pp. 401-408.
  16. K. C. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," Proc. IEE 113, 1151-1158 (1966).
  17. F. P. Kapron, D. B. Keck, and R. D. Maurer, "Radiation losses in glass waveguides," Appl. Phys. Lett. 17, 423-425 (1970). https://doi.org/10.1063/1.1653255
  18. I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, "Junction lasers which operate continuously at room temperature, Appl. Phys. Lett. 17, 109-111 (1970). https://doi.org/10.1063/1.1653326
  19. R. W. Dixon, "Remembering the million-hour laser," Optics & Photonics News (May 2012), pp. 44-48.
  20. I. Jacobs, "Atlanta fiber system experiment: overview," Bell Syst. Tech. J. 57, 1717-1721 (1978). https://doi.org/10.1002/j.1538-7305.1978.tb02121.x
  21. I. Jacobs, "Lightwave system development: looking back and ahead," Optic & Photonics News (Feb. 1995), pp. 19-23.
  22. M. I. Schwartz, W. A. Reenstra, J. H. Mullins, and J. S. Cook, "The Chicago lighwave communications project," Bell Syst. Tech. J. 57, 1881-1888 (1978). https://doi.org/10.1002/j.1538-7305.1978.tb02132.x
  23. G. P. Agrawal, "Lightwave technology: Telecommunication systems," Wiley-Interscience (2005).
  24. "Special Edition: FT series G," The Valley Voice, AT&T Network Systems (Feb. 1986).
  25. R. J. Sanferrare, "Terrestrial lightwave systems," AT&T Tech. J. 66, 97-107 (1987).
  26. R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, "High-gain rare-earth-doped fiber amplifier at $1.54{\mu}m$," Proc. OFC/IOOC (Feb. 1987), paper WI2.
  27. E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum., "Erbium fiber laser amplifier at 1.55 mm with pump at 1.49 mm and Yb sensitized Er oscillator," Proc. OFC (Feb. 1988), paper PD2-1.
  28. Y. Kimura, K. Suzuki, and M. Nakazawa, "Efficient $Er^{3+}$-doped optical fiber amplifier pumped by a $1.48-{\mu}m$ high-power laser diode," Proc. OFC (Feb. 1989), paper TUG6.
  29. M. Nakazawa, Y. Kimura, and K. Suzuki, "Soliton amplification and transmission with an $Er^{3+}$-doped fiber repeater pumped by InGaAsP laser diodes," Proc. OFC (Feb. 1989), paper PD2-1.
  30. N. Edagawa, Y. Yoshida, H. Taga, S. Yamamoto, K. Mochizuki, and H. Wakabayashi, "904 km, 1.2 Gbit/s non-regenerative optical fibre transmission experiment using 12 Er-doped fiber amplifiers," Electron Lett. 26, 66-67 (1990). https://doi.org/10.1049/el:19900043
  31. S. Saito, T. Imai, T. Sugie, N. Ohkawa, Y. Ichihashi, and T. Ito, "An over 2,200 km coherent transmission experiment at 2.5 Gbit/s using erbium-doped fiber amplifiers," Proc. OFC (Feb. 1990), paper PD2-1.
  32. H. Taga, Y. Yoshida, N. Edagawa, S. Yamamoto, and H. Wakabayashi, "459 km, "2.4 Gbit/s four wavelength multiplexing optical fibre transmission experiment using six Er-doped fibre amplifiers," Electron Lett. 26, 500-601 (1990). https://doi.org/10.1049/el:19900325
  33. D. A. Fishman, J. A. Nagel, T. W. Cline, R. E. Tench, T. C. Pleiss, T. Miller, D. G. Coult, M. A. Milbrodt, P. D. Yeates, A. Chraplyvy, R. Tkach, A. B. Picirilli, J. R. Simpson, and C. M. Miller, "A high capacity noncoherent FSK lightwave field experiment using $Er^{3+}$-doped fiber optical amplifiers," IEEE Photon. Technol. Lett. 2, 662-664 (1990). https://doi.org/10.1109/68.59343
  34. C. Dragone, "An NxN optical multiplexer using a planar arrangement of two star couplers," IEEE Photon. Technol. Lett. 3, 812-815 (1991). https://doi.org/10.1109/68.84502
  35. T. Mack, "Communications: the next wave," Forbes (Oct. 6, 1997).
  36. B. Gowan, "#Ciena25: The story behind the founding of Ciena," Ciena, Sept. 14, 2017 (http://www.ciena.com/insights/articles/Ciena-20-The-Founding-of-Ciena_prx.html).
  37. H. Onaka, H. Miyata, G. Ishikawa, K. Otsuka, H. Ooi, Y. Kai,S. Kinoshita, M. Seino H. Nishimoto, and T. Chikama, "1.1 Tb/s WDM transmission over a 150 km $1.3{\mu}m$ zero-dispersion single-mode fiber," Proc. OFC (Feb. 1996), paper PD19-1.
  38. A. H. Gnauck, A. R. Chraplyvy, R. W. Thach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, "One terabit/s transmission experiment," Proc. OFC (Feb. 1996), paper PD20-1.
  39. T. Morioka, H. Takara, S. Kawanshi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, "$100\;Gbit/s{\times}10\;channel$ OTDM/WDM transmission using a single supercontinuum WDM source," Proc. OFC (Feb. 1996), paper PD21-1.
  40. K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, and T. Ono, "10.92-Tb/s ($273{\times}40-Gb/s$) triple-band/ultra-dense WDM optical-repeatered transmission experiment," Proc. OFC (Mar. 2001), paper PD24-1.
  41. S. Bigo, Y. Frignac, G. Charlet, W. Idler, S. Borne, H. Gross, R. Dischler, W. Poehlmann, P. Tran, C. Simonneau, D. Bayart, G. Veitlr, A. Jourdan, and J.-P. Hamaid, "10.2 Tbit/s ($256{\times}42.7\;Gbit/s$ PDM/WDM) transmission over 100 km $TeraLight^{TM}$ fiber with 1.28 bit/s/Hz spectral efficiency," Proc. OFC (Mar. 2001), paper PD25-1.
  42. A. A. Huurademan, "The worldwide history of telecommunications," Wiley-Interscience (2003).
  43. P. E. White, "Estimated network load," Bellcore, private communication (Jan. 1993).
  44. A. M. Ozylko, "Measurements and mismeasurements and the dynamics of data traffic growth," Computer Measurement Group's International Conference (Dec. 2002).
  45. M. Castells, "The information age: economy, society and culture, Vol. 1-3," Wiley-Blackwell (1996-1998).
  46. C. Lu, "The race for bandwidth: understanding data transmission," Microsoft Press (1998).
  47. M. D. O'Dell, "Racing with an exponential or the dangers of linear thinking in an exponential world," Stanford symposium, Optical Internet: The Next Generation (May 16, 2000).
  48. G. Gilder, "Fiber keeps its promise," Forbes ASAP (Apr. 7, 1997).
  49. J. Wimmer, plenary talk, OFC/IOOC 1999 (Feb. 1999).
  50. E. Kreifeldt, "MCI WorldCom's Wimmer lays out optical roadmap," Fiber Optics Online (Apr. 4, 2000).
  51. J. Hecht, "Boom, bubble, burst: The fiber optic mania," Optics & Photonics News (Oct. 2016), pp. 48-53
  52. V. Cerf, "The high capacity challenge," plenary talk, OFC 2002 (Mar. 2002).
  53. "Global internet geography," TeleGeography (2003).
  54. "The great telecoms crash," Economist (July 18, 2002).
  55. L. Endlich, "Optical illusions: Lucent and the crash of telecom," Simon & Schuster (2004).
  56. M. A. Wegleitner, "Maximizing the impact of optical technology," plenary talk, OFC/NFOEC (Mar. 2007).
  57. A. Viglienzoni, "Evolution of products and enabling technologies for optical networks," Proc. Photonics in Switching (Aug. 2008).
  58. P. Polishuk, "Network traffic growth projection," Information Gatekeepers Inc. (Dec. 19, 2006).
  59. "IX backplane maximum/minimum traffic volume," Japan Internet Exchange Co (June 7, 2014).
  60. "Cisco visual networking index: Forecast and methodology, 2011-2016," Cisco (May 30, 2012).
  61. R. W. Tkach, "Technologies for a renaissance in long-distance optical communications," plenary talk, Asia-Pacific Optical Communications (APOC) Conference (Oct. 2008).
  62. S. E. Ante, "Telecom: Back from the dead," Businessweek (June 26, 2007).
  63. T. Wu, "Bandwidth is the new black gold," TIME Magazine (Mar. 11, 2010).
  64. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, "26 Tbit $s^{-1}$ line-rate super-channel transmission utilizing all-optical fast Fourier transform processing," Nat. Photon. 5, 364-371 (2011). https://doi.org/10.1038/nphoton.2011.74
  65. "ZTE displays 400-Gbps and 1-Tbps DWDM prototype," Lightwave (June 18, 2012).
  66. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, "1-Tb/s per channel coherent optical OFDM transmission with subwavelength bandwidth access," Proc. OFC (Mar. 2009), paper PDPC1.
  67. R. Rios-Muller, J. Renaudier, P. Brindel, H. Mardoyan, P. Jenneve, L. Schmalen, and G. Charlet, "1-Terabit/s net data-rate transceiver based on single-carrier Nyquist-shaped 124 GBaud PDM-32QAM," Proc. OFC (Mar. 2015), paper Th5B.1.
  68. D. S. Millar1, L. Galdino, R. Maher, M. Pajovic, T. Koike-Akino, G. Saavedra, D. J. Elson, D. Lavery, K. Shi, M. S. Erkilinc, E. Sillekens, R. I. Killey, B. C. Thomsen, K. Kojima, K. Parsons, and P. Bayvel, "A simplified dual-carrier DP-64QAM 1 Tb/s transceiver," Proc. OFC (Mar. 2017), paper M3D.2.
  69. "Recommendation ITU-T G.709/Y.1331," ITU (June 22, 2016).
  70. "The 2016 Ethernet roadmap," Ethernet Alliance (Mar. 2016).
  71. S. J. Trowbridge, "Ethernet and OTN - 400G and beyond," Proc. OFC (Mar. 2015), paper Th3H.1.
  72. N. Yoshikane and I. Morita, "1.14 b/s/Hz spectrally efficient $50{\times}85.4-Gb/s$ transmission over 300 km using copolarized RZ-DQPSK signals," J. Lightw. Technol. 23, 108-114 (2005). https://doi.org/10.1109/JLT.2004.840343
  73. A. H. Gnauck, P. J. Winzer, L. L. Buhl, T. Kawanishi, T. Sakamoto, M. Izutsu, and K. Higuma, "12.3-Tb/s C-band DQPSK transmission at 3.2 b/s/Hz spectral efficiency," Proc. ECOC (Sept. 2006), paper Th4.1.2.
  74. S. Zhang, F. Yaman, Y.-K. Huang, J. D. Downie, D. Zou, W. A. Wood, A. Zakharian, R. Khrapko, S. Mishra, V. Nazarov, J. Hurley, I. B. Djordjevic, E. Mateo, Y. Inada, "Capacity-approaching transmission over 6375 km at spectral efficiency of 8.3 bit/s/Hz," Proc. OFC (Mar. 2016), paper Th5C.2.
  75. H. Takara, T. Ohara, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi and T. Morioka, "Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source," Electron. Lett. 41, 270-271 (2005). https://doi.org/10.1049/el:20057011
  76. "ITU-T recommendation G.692, Optical interfaces for multichannel systems with optical amplifiers," ITU (Oct. 1998).
  77. "ITU-T recommendation G.694.1, Spectral grids for WDM applications: DWDM frequency grid," ITU (Feb. 2012).
  78. A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, Member, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, "1 -Tb/s Transmission Experiment," IEEE Photon. Technol. Lett. 8, 1264-1266 (1996). https://doi.org/10.1109/68.531857
  79. G. May, A. Solheim, and J. Conradi, "Extended 10 Gb/s fiber transmission distance at 1538 nm using a duobinary receiver," IEEE Photon. Technol. Lett. 6, 648-650 (1994). https://doi.org/10.1109/68.285568
  80. K. Yonenaga and K. Hagimoto, "$10-Gbit/s{\times}four-channel$ WDM transmission experiment over 2400-km DSF using optical DPSK direct detection scheme," Proc. OFC (Feb. 1997), paper ThS2.
  81. R.A. Griffin and A.C. Carter, "Optical differential quadrature phase-shift key (oOQPSK) for high capacity optical transmission," Proc. OFC (Mar. 2002), paper WX6.
  82. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, "2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz," Opt. Express 23, 4960-4969 (2015). https://doi.org/10.1364/OE.23.004960
  83. O. E. DeLange, "Wide-band optical communication systems: Part II-Frequency-division multiplexing," Proc. IEEE, 58, 1683-1690 (1970). https://doi.org/10.1109/PROC.1970.7989
  84. T. Imai, Y. Hayashi, N. Ohkawa, T. Sugie, Y. Ichihashi, and T. Ito, "Field demonstration of 2.5 Gbit/s coherent optical transmission through installed submarine fibre cables," Electron. Lett. 26, 1407-1409 (1990). https://doi.org/10.1049/el:19900904
  85. D. MacGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O'Sullivan, "5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation," Proc. OFC (Mar. 2005), paper PDP27.
  86. S. Tsukamoto, D.-S. Ly-Gagnon, K. Katoh, and K. Kikuchi, "Coherent demodulation of 40-Gbit/s polarization-multiplexed QPSK signals with 16-GHz spacing after 200-km transmission," Proc. OFC (Mar. 2005), paper PDP29.
  87. D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, "Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation," J. Lightw. Technol. 24, 12-21 (2006). https://doi.org/10.1109/JLT.2005.860477
  88. K. Kikuchi, "Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation," IEEE J. Sel. Topics Quantum Electron. 12, 563-570 (2006). https://doi.org/10.1109/JSTQE.2006.876307
  89. K. Roberts, "Electronic dispersion compensation beyond 10 Gb/s," in Proc. 2007 Digest of the LEOS Summer Topical Meetings (Jul. 2007), pp. 9-10.
  90. C. Laperle and M. O'Sullivan, "Advances in high-speed DACs, ADCs, and DSP for optical coherent transceivers," J. Lightw. Technol. 32, 629-643 (2014). https://doi.org/10.1109/JLT.2013.2284134
  91. L. Kull, D. Luu, P. A. Francese, C. Menolfi, M. Braendli, M. Kossel, T. Morf, A. Cevrero, I. Oezkaya, H. Yueksel, and T. Toifl, "CMOS ADCs towards 100 GS/s and beyond," in Proc. IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) (Oct. 2016).
  92. P. Bower and I. Dedic, "High speed converters and DSP for 100G and beyond," Opt. Fiber Technol. 17, 464-472 (2011). https://doi.org/10.1016/j.yofte.2011.07.008
  93. A. Sano, H. Masuda, Y. Kisaka, S. Aisawa, E. Yoshida, Y. Miyamoto, M. Koga, K. Hagimoto, T. Yamada, T. Furuta, and H. Fukuyama, "14-Tb/s (140 111-Gb/s PDM/WDM) CSRZ-DQPSK transmission over 160 km using 7-THz bandwidth extended L-band EDFAs," Proc. ECOC (Sept. 2006), paper Th4.1.1.
  94. A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, "25.6-Tb/s C+L-band transmission of polarization-multiplexed RZ-DQPSK signals," Proc. OFC (Mar. 2007), paper PDP19.
  95. Y. Takushima, H. Y. Choi, and Y. C. Chung, "Transmission of 108-Gb/s PDM 16ADPSK signal on 25-GHz grid using non-coherent receivers," Opt. Express 17, 13458-13466 (2009). https://doi.org/10.1364/OE.17.013458
  96. A. H. Gnauck, P. J. Winzer, C. R. Doerr, and L. L. Buhl, "$10{\times}112\;Gb/s$ PDM 16-QAM transmission over 630 km of fiber with 6.2-b/s/Hz spectral efficiency," Proc. OFC (2009), paper PDPB8.
  97. J. Yu, X. Zhou, Y.-K. Huang, S. Gupta, M.. Huang, T. Wang, and P. Magill, "112.8-Gb/s PM-RZ-64QAM optical signal generation and transmission on a 12.5GHz WDM grid," Proc. OFC (2010), paper OThM1.
  98. G. Charlet, J. Renaudier, H. Mardoyan, P. Tran, O. Bertran Pardo, F. Verluise, M. Achouche, A. Boutin, F. Blache, J.-Y. Dupuy, and S. Bigo, "Transmission of 16.4 Tbit/s capacity over 2550 km using PDM QPSK modulation format and coherent receiver," Proc. OFC (Mar. 2008), paper PDP3.
  99. J.-X. Cai, H. G. Batshon, H. Zhang, C. R. Davidson, Y. Sun, M. Mazurczyk, D. G. Foursa, O. Sinkin, A. Pilipetskii, G. Mohs, and N. S. Bergano, "25Tb/s transmission over 5,530km using 16QAM at 5.2 b/s/Hz spectral efficiency," Opt. Express 21, 1555-1560 (2013). https://doi.org/10.1364/OE.21.001555
  100. H. Masuda, E. Yamazaki, A. Sano, T. Yoshimatsu, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, T. Yamada, and S. Kamei, "13.5 Tb/s ($135{\times}111\;Gb/s/ch$) noguard-interval coherent OFDM transmission over 6248 km using SNR maximized second-order DRA in the extended L-band," Proc. OFC (Mar. 2009), paper PDPB5.
  101. "Product brochure: 6500 packet-optical platform," Ciena (Apr. 2017).
  102. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, "Capacity limits of optical fiber networks," J. Lightw. Technol. 28, 662-701 (2010). https://doi.org/10.1109/JLT.2009.2039464
  103. H. Ono, M. Yamada, and Y. Ohishi, "Gain-flattened Er3+-doped fiber amplifier for a WDM signal in the $1.57-1.60-{\mu}m$ wavelength region," IEEE Photon. Technol. Lett. 9, 596-598 (1997). https://doi.org/10.1109/68.588134
  104. T. Kasamatsu, Y. Yano, and H. Sekita, "$1.50-{\mu}m$-band gain-shifted thulium-doped fiber amplifier with 1.05- and $1.56-{\mu}m$ dual-wavelength pumping," Opt. Lett. 24, 1684-1686 (1999). https://doi.org/10.1364/OL.24.001684
  105. T. J. Whitley, "A review of recent system demonstrations incorporating $1.3-{\mu}m$ praseody-mium-doped fluoride fiber amplifiers," J. Lightw. Technol. 13, 744-760 (1995). https://doi.org/10.1109/50.387792
  106. T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, "An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots," IEEE Photon. Technol. Lett. 17, 1614-1616 (2005). https://doi.org/10.1109/LPT.2005.851884
  107. J. Bromage, "Raman amplification for fiber communications systems," J. Lightw. Technol. 22, 79-93 (2004). https://doi.org/10.1109/JLT.2003.822828
  108. R. Kashyap and K. J. Blow, "Observation of catastrophic self-propelled self-focusing in optical fibers," Electron. Lett. 24, 47-48 (1988). https://doi.org/10.1049/el:19880032
  109. A. R. Chraplyvy, "The coming capacity crunch," Proc. ECOC, plenary talk (Sept. 2009).
  110. M. Nakazawa, "Extremely advanced transmission with 3M technologies (multi-level modulation, multi-core & multi-mode)," Proc. OFC (Mar. 2012), paper OTu1D.1.
  111. D. J. Richardson, J. M. Fini and L. E. Nelson, "Space-division multiplexing in optical fibres," Nat. Photon. 7, 354-362 (2013). https://doi.org/10.1038/nphoton.2013.94
  112. Y. Sasaki, R. Fukumoto, K. Takenaga, K. Aikawa, K. Saitoh, T. Morioka, and Y. Miyamoto, "Crosstalk-Managed Heterogeneous Single-Mode 32-Core Fibre," Proc. ECOC (Sept. 2016), paper W.2.B.2.
  113. G. Li, N. Bai, N. Zhao, and C. Xia, "Space-division multiplexing: the next frontier in optical communication," Adv. Opt. Photon. 6, 413-487 (2014). https://doi.org/10.1364/AOP.6.000413
  114. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, "1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency," Proc. ECOC (Sept. 2012), paper Th.3,C.1.
  115. K. Igarashi, T. Tsuritani, I. Morita, Y. Tsuchida, K. Maeda, M. Tadakuma, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, "$1.03-Exabit/s{\cdot}km$ super-Nyquist-WDM transmission over 7,326-km seven-core fiber," Proc. ECOC (Sept. 2013), paper PD3.E.3.
  116. T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, and T. Morioka, "$12-core{\times}3-mode$ dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization, Proc. OFC (Mar. 2014), paper Th5B.2.
  117. B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano and J. Marciante, "2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb," Proc. ECOC (Sept. 2015), paper PDP.3.1.
  118. T. Mizuno K. Shibahara, H. Ono, Y. Abe, Y. Miyamoto, F. Ye, T. Morioka, Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Aikawa, K. Saitoh, Y. Jung, D. J. Richardson, K. Pulverer, M. Bohn, and M. Yamada, "32-core dense SDM unidirectional transmission of PDM-16QAM signals over 1600 km using crosstalk-managed single-mode heterogeneous multicore transmission line," Proc. OFC (Mar. 2016), paper Th5C.3.
  119. M. A. Taubenblatt, "Optical interconnects for high-performance computing," J. Lightw. Technol. 30, 448-458 (2012). https://doi.org/10.1109/JLT.2011.2172989
  120. A. A. M. Saleh and J. M. Simmons, "All-optical networking - evolution, benefits, challenges, and future vision," Proc. IEEE 100, 1105-1117 (2012). https://doi.org/10.1109/JPROC.2011.2182589
  121. T. A. Strasser and J. Taylor, "ROADMS unlock the edge of the network," IEEE Commun. Mag. 46, 146-149 (2008).
  122. "MCP-9328: Reconfigurable optical add-drop multiplexer (ROADM) - A global strategic business report, Global Industry Analysts, Inc. (May 7, 2015).
  123. M. Kawahata, "Development of optical visual information system," in Proc. European Electro-Optics Conferences, SPIE (Oct. 1976), Vol. 99, pp. 47-55.
  124. Y. C. Chung, "FTTH - past, present, and future," Proc. CLEO-PR, plenary talk (Aug, 2015).
  125. "HKT offers 10-Gbps broadband FTTH in Hong Kong," Lightwave Magazine (Feb. 16, 2015).
  126. M. Zager, "10 Gigabits: The next frontier," Broadband Communities (Nov./Dec. 2015), pp. 86-89.
  127. D. Nesset, "PON roadmap," J. Opt. Commun. Netw. 9, A71-A76 (2017). https://doi.org/10.1364/JOCN.9.000A71
  128. U. Holzle, "A ubiquitous cloud requires a transparent network," Proc. OFC, plenary talk (Mar. 2017).
  129. A. Vahdat, H. Liu, X. Zhao, and C. Johnson, "The Emerging Optical Data Center," Proc. OFC (Mar. 2011), paper OTuH2.
  130. M. Burgess "Google's next submarine cable will connect Singapore to Australia," Wired (Apr. 6, 2017).
  131. "Infinera and Seaborn Set Subsea Industry Benchmark for Capacity-Reach with XTS-3300 on Seabras-1," Submarine Cable Networks (Oct. 1, 2017).
  132. P. Chanclou, A. Pizzinati, F. L. Clech, T.-L. Reedeker, Y. Lagadec, F. Saliou, B. L. Guyader, L. Guillo, Q. Deniel, S. Gosselini, S. D. LE, T. Diallo, R. Brenot, F. Lelarge, L. Marazzi, P. Parolari, M. Martinelli, S. O'Dull, S. A. Gebrewold, D. Hillerkuss, J. Leuthold, G, Gavioli, and P. Galli, "Optical fiber solution for mobile fronthaul to achieve cloud radio access network," Proc. Future Network & Mobile Summit (July 2013), pp. 1-11.
  133. V. W. S. Chan, Free-space optical communications J. Lightw. Technol. 24, 4750-4762 (2006). https://doi.org/10.1109/JLT.2006.885252
  134. X. Zhu and J. M. Kahn, "Free-space optical communication through atmospheric turbulence channels," IEEE Trans. Commun. 50, 1293-1300 (2002). https://doi.org/10.1109/TCOMM.2002.800829
  135. D. Thomson, A. Zilkie, J. E Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fedeli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O'Brien, G. Z Mashanovich, and M. Nedeljkovic, "Roadmap on silicon photonics," J. Opt. 18, 073003, 1-20 (2016).