참고문헌
- Baltimore, D., Berg, P., Botchan, M., Carroll, D., Charo, R.A., Church, G., Corn, J.E., Daley, G.Q., Doudna, J.A., Fenner, M., et al. (2015). Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science 348, 36-38. https://doi.org/10.1126/science.aab1028
- Bibikova, M., Golic, M., Golic, K.G., and Carroll, D. (2002). Targeted chromosomal cleavage and mutagenesis in drosophila using zincfinger nucleases. Genetics 161, 1169-1175.
- Bibikova, M., Beumer, K., Trautman, J.K., and Carroll, D. (2003). Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764. https://doi.org/10.1126/science.1079512
- Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A., and Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509-1512. https://doi.org/10.1126/science.1178811
- Choulika, A., Perrin, A., Dujon, B., and Nicolas, J.F. (1995). Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 1968-1973. https://doi.org/10.1128/MCB.15.4.1968
- Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., and Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823. https://doi.org/10.1126/science.1231143
- Cox, D.B.T., Gootenberg, J.S., Abudayyeh, O.O., Franklin, B., Kellner, M.J., Joung, J., Zhang, F. (2017). RNA editing with CRISPR-Cas13. Science 358, 1019-1027. https://doi.org/10.1126/science.aaq0180
- Davis, K.M., Pattanayak, V., Thompson, D.B., Zuris, J.A., and Liu, D.R. (2015). Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat. Chem. Biol. 11, 316-318. https://doi.org/10.1038/nchembio.1793
- Deveau, H., Barrangou, R., Garneau, J.E., Labonte, J., Fremaux, C., Boyaval, P., Romero, D.A., Horvath, P., and Moineau, S. (2008). Phage response to CRISPR-encoded resistance in streptococcus thermophilus. J. Bacteriol. 190, 1390-1400. https://doi.org/10.1128/JB.01412-07
- Doudna, J.A., and Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096. https://doi.org/10.1126/science.1258096
- Garneau, J.E., Dupuis, M.E., Villion, M., Romero, D.A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadan, A.H., and Moineau. S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67-71. https://doi.org/10.1038/nature09523
- Gasiunas, G., Barrangou, R., Horvath, P., and Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 109, E2579-E2586. https://doi.org/10.1073/pnas.1208507109
- Hsu, P.D., Lander, E.S., and Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278. https://doi.org/10.1016/j.cell.2014.05.010
- Jasin. M. (1996). Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet. 12, 224-228. https://doi.org/10.1016/0168-9525(96)10019-6
- Jeggo, P.A. (1998). DNA breakage and repair. Adv. Genet. 38, 185-218.
- Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821. https://doi.org/10.1126/science.1225829
- Kable, M.L., Seiwert, S.D., Heidmann, S., and Stuart, K. (1996). RNA editing: a mechanism for gRNA-specified uridylate insertion into precursor mRNA. Science 273, 1189-1195. https://doi.org/10.1126/science.273.5279.1189
- Kim, D.K., Lee, S.C., and Lee, H.W. (2009). CD137 ligand-mediated reverse signals increase cell viability and cytokine expression in murine myeloid cells: Involvement of mTOR/p70S6 kinase and Akt. Eur. J. Immunol. 39, 2617-2628. https://doi.org/10.1002/eji.200939292
- Kim, E.C., Moon, J.H., Kang, S.W., Kwon, B., and Lee, H.W. (2015). TMEM126A, a CD137 ligand binding protein, couples with the TLR4 signal transduction pathway in macrophages. Mol. Immunol. 64, 244-251. https://doi.org/10.1016/j.molimm.2014.12.001
- Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., and Liu, D.R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424. https://doi.org/10.1038/nature17946
- Komor, A.C., Badran, A.H., and David R.L. (2017). CRISPR-Based technologies for the manipulation of eukaryotic genomes. Cell 168, 20-36. https://doi.org/10.1016/j.cell.2016.10.044
- Koo, T., Lee, J., and Kim J.S. (2015). Measuring and reducing Off-Target activities of programmable nucleases including CRISPR-Cas9. Mol. Cells 38, 475-481. https://doi.org/10.14348/molcells.2015.0103
- Lee, H.W., Park, S.J., Choi, B.K., Kim, H.H., Nam, K.O., and Kwon, B.S. (2002). 4-1BB promotes the survival of CD8(+) T lymphocytes by increasing expression of Bcl-x(L) and BfI-1. J. Immunol. 169, 4882-4888. https://doi.org/10.4049/jimmunol.169.9.4882
- Lee, H.S., Guo, J., Lemke, E.A., Dimla, R.D., and Schultz, P.G. (2009). Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisiae. J. Am. Chem. Soc. 131, 12921-12923. https://doi.org/10.1021/ja904896s
- Li, T., Huang, S., Jiang, W.Z., Wright, D., Spalding, M.H., Weeks, D.P., and Yang, B. (2011a). TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. 39, 359-372. https://doi.org/10.1093/nar/gkq704
- Li, T., Huang, S., Zhao, X., Wright, D.A., Carpenter, S., Spalding, M.H., Weeks, D.P., and Yang, B. (2011b). Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. 39, 6315-6325. https://doi.org/10.1093/nar/gkr188
- Lin, F.L., Sperle, K., and Sternberg, N. (1985). Recombination in mouse L cells between DNA introduced into cells and homologous chromosomal sequences. Proc. Natl. Acad. Sci. USA 82, 1391-1395. https://doi.org/10.1073/pnas.82.5.1391
- Mali, P., Aach, J., Stranges, P.B., Esvelt, K.M., Moosburner, M., Kosuri, S., Yang, L., and Church, G.M. (2013). CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833-838. https://doi.org/10.1038/nbt.2675
- Ran, F.A., Hsu, P.D., Lin, C.Y., Gootenberg, J.S., Konermann, S., Trevino, A.E., Scott, D.A., Inoue, A., Matoba, S., Zhang, Y., et al. (2013). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389. https://doi.org/10.1016/j.cell.2013.08.021
- Shao, Z., and Schwarz, H. (2011). CD137 ligand, a member of the tumor necrosis factor family, regulates immune responses via reverse signal transduction. J. Leukocyte Biol. 89, 21-29. https://doi.org/10.1189/jlb.0510315
- Summerer, D., Chen, S., Wu, N., Deiters, A., Chin, J.W., and Schultz, P.G. (2006). A genetically encoded fluorescent amino acid. Proc. Natl. Acad. Sci. USA 103, 9785-9789. https://doi.org/10.1073/pnas.0603965103
- Wang, C., Lin, G.H., McPherson, A.J., and Watts, T.H. (2009). Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. Immunol. Rev. 229, 192-215. https://doi.org/10.1111/j.1600-065X.2009.00765.x