DOI QR코드

DOI QR Code

Uncertainty quantification for structural health monitoring applications

  • Nasr, Dana E. (Department of Civil and Environmental Engineering, American University of Beirut) ;
  • Slika, Wael G. (Department of Civil and Environmental Engineering, American University of Beirut) ;
  • Saad, George A. (Department of Civil and Environmental Engineering, American University of Beirut)
  • Received : 2017.11.13
  • Accepted : 2018.09.03
  • Published : 2018.10.25

Abstract

The difficulty in modeling complex nonlinear structures lies in the presence of significant sources of uncertainties mainly attributed to sudden changes in the structure's behavior caused by regular aging factors or extreme events. Quantifying these uncertainties and accurately representing them within the complex mathematical framework of Structural Health Monitoring (SHM) are significantly essential for system identification and damage detection purposes. This study highlights the importance of uncertainty quantification in SHM frameworks, and presents a comparative analysis between intrusive and non-intrusive techniques in quantifying uncertainties for SHM purposes through two different variations of the Kalman Filter (KF) method, the Ensemble Kalman filter (EnKF) and the Polynomial Chaos Kalman Filter (PCKF). The comparative analysis is based on a numerical example that consists of a four degrees-of-freedom (DOF) system, comprising Bouc-Wen hysteretic behavior and subjected to El-Centro earthquake excitation. The comparison is based on the ability of each technique to quantify the different sources of uncertainty for SHM purposes and to accurately approximate the system state and parameters when compared to the true state with the least computational burden. While the results show that both filters are able to locate the damage in space and time and to accurately estimate the system responses and unknown parameters, the computational cost of PCKF is shown to be less than that of EnKF for a similar level of numerical accuracy.

Keywords

References

  1. Al-Hussein, A. and Haldar, A. (2016), "Unscented Kalman filter with unknown input and weighted global iteration for health assessment of large structural systems", Struct. Control Health Monit., 23(1), 156-175. https://doi.org/10.1002/stc.1764
  2. Arasaratnam, I. and Haykin, S. (2009), "Cubature Kalman filters", IEEE T. Autom. Control, 54(6), 1254-1269. https://doi.org/10.1109/TAC.2009.2019800
  3. Bertino, L., Evensen, G. and Wackernagel, H. (2003), "Sequential data assimilation techniques in oceanography", International Stat. Rev., 71(2), 223-241. https://doi.org/10.1111/j.1751-5823.2003.tb00194.x
  4. Burgers, G., Leeuwen, P. and Evensen, G. (1998), "Analysis scheme in the ensemble Kalman filter", Mon. Weather Rev., 126(6), 1719-1724. https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
  5. Chang, P., Faltau, A. and Liu, S. (2003), "Review Paper: health monitoring of civil infrastructure", Struct. Health Monit., 2(2), 257-267.
  6. Chatzi, E.N. and Smyth, A.W. (2009), "The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non-collocated heterogeneous sensing", Struct. Control Health Monit., 16(1), 99-123. https://doi.org/10.1002/stc.290
  7. Chatzi, E.N. and Smyth, A.W. (2013), "Particle filter scheme with mutation for the estimation of time-invariant parameters in structural health monitoring applications", Struct. Control Health Monit., 20(7), 1081-1095. https://doi.org/10.1002/stc.1520
  8. Chatzi, N. and Fuggini, C. (2015), "Online correction of drift in structural identification using artificial white noise observations and an unscented Kalman filter", Smart Struct. Syst., 16(2), 295-328. https://doi.org/10.12989/sss.2015.16.2.295
  9. Chowdhary, G. and Jategaonkar, R. (2010), "Aerodynamic parameter estimation from flight data applying extended and unscented Kalman filter", Aerosp. Sci. Technol., 14(2), 106-117. https://doi.org/10.1016/j.ast.2009.10.003
  10. Chui, C. and Chen, G. (1991), Kalman Filtering with Real Time Applications, Springer.
  11. Corigliano, A. and Mariani, S. (2004), "Parameter identification in explicit structural dynamics: performance of the ectended Kalman filter", Comput. Method. Appl. M., 193(36), 3807-3835.
  12. Daley, R. (1997), "Atmospheric data assimilation", J. Meteorol. Soc. Japan Series 2, 75, 319-329. https://doi.org/10.2151/jmsj1965.75.1B_319
  13. Der Kiureghiana, A. and Ditlevsen, O. (2009), "Aleatory or epistemic? Does it matter?", Struct. Saf., 31(2), 105-112. https://doi.org/10.1016/j.strusafe.2008.06.020
  14. Doebling, S., Farrar, C., Prime, M. and Shevitz, D. (1996), Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review, Los Alamos National Lab., NM (United States).
  15. Evensen, G. (1994), "Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo to forecast error statistics", J. Geophysical Research: Oceans (1978-2012), 99(C5), 10143-10162. https://doi.org/10.1029/94JC00572
  16. Evensen, G. (2003), "The ensemble Kalman filer: Theoretical formulation and practical implementation", Ocean Dynam., 53(4), 343-367. https://doi.org/10.1007/s10236-003-0036-9
  17. Evensen, G. (2009), "The ensemble Kalman filter for combined state and parameter estimation", IEEE Control Syst. Mag., 83-104.
  18. Farrar, C. and Worden, K. (2007), "An introduction to structural health monitoring", Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), 303-315. https://doi.org/10.1098/rsta.2006.1928
  19. Ghanem, R. (1999), "Ingredients for a general purpose stochastic finite element formulation", Comput. Method. Appl. M., 168(1), 19-34. https://doi.org/10.1016/S0045-7825(98)00106-6
  20. Ghanem, R. and Ferro, G. (2006), "Health monitoring of strongly nonlinear systems using the ensemble Kalman filter", Struct. Control Health Monit. 13(1), 245-259. https://doi.org/10.1002/stc.139
  21. Ghanem, R. and Spanos, P. (2003), Stochastic Finite Elements: A Spectral Approach, Courrier Corporation.
  22. Gillijns, S., Mendoza, O., Chandrasekar, J., De Moor, B., Bernstein, D. and Ridley, A. (2006), "What is the ensemble Kalman filter and how well does it work?", Proceedings of the American Control Conference, Minneapolis.
  23. Goyal, D. and Pabla, B.S. (2015), "The vibration monitoring methods and signal processing techniques for structural health monitoring: a review", Arch. Comput. Method. E., 1-10.
  24. Grewal, M. and Andrews, A. (2008), Kalman Filtering Theory and Applications using MATLAB, John Wiley & Sons.
  25. Hassani, V., Tjahjowidodo, T. and Do, T.N. (2014), "A survey in hysteresis modeling, identification and control", Mech. Syst. Signal Pr., 49(1), 209-233. https://doi.org/10.1016/j.ymssp.2014.04.012
  26. Helton, J.C. (2000), "Sampling-based methods for uncertainty and sensitivity analysis", Multimedia Environ. Model., 32(2), 73.
  27. Helton, J.C. and Davis, F.J. (2002), "Illustration of sampling-based methods for uncertainty and sensitivity analysis", Risk Anal., 22(3), 591-622. https://doi.org/10.1111/0272-4332.00041
  28. Helton, J.C. and Oberkampf, W.L. (2004), "Alternative representations of epistemic uncertainty", Reliab. Eng. Syst. Saf., 85(1), 1-10. https://doi.org/10.1016/j.ress.2004.03.001
  29. Hommels, A., Murakami, A. and Nishimura, S.I. (2009), "A comparison of the ensemble Kalman filter with the Unscented Kalman filter: application to the construction of a raod embankment", Geotechniek, 13(1), 52.
  30. Ikhouane, F., Manosa, V. and Rodellar, J. (2007), "Dynamic properties of the hysteretic Bouc-Wen model", Syst. Control. Lett., 56(3), 197-205. https://doi.org/10.1016/j.sysconle.2006.09.001
  31. Ismail, M., Lkhouane, F. and Rodellar, J. (2009), "The hysteresis Bouc-Wen model, a survey", Arch. Omputat. Method. Eng., 16(2), 161-188. https://doi.org/10.1007/s11831-009-9031-8
  32. Kalman, R. (1960), "A new approach to linear filtering and prediction problems", J. Basic Eng., 82(1), 35-45. https://doi.org/10.1115/1.3662552
  33. Kalnay, E. (2003), Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press.
  34. Kandepu, R., Foss, B. and Imsland, L. (2008), "Applying the unscented Kalman filter for nonlinear state estimation", J. Process Contr., 18(7), 753-768. https://doi.org/10.1016/j.jprocont.2007.11.004
  35. LeDimet, F. and Talagrand, O. (1986), "Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects", Tellus A, 38(2), 97-110. https://doi.org/10.3402/tellusa.v38i2.11706
  36. Lei, Y., Chen, F. and Zhou, H. (2015), "A two-stage and two-step algorithm for the identification of structural damage and unknown excitations: numerical and experimental studies", Smart Struct. Syst., 15(1), 57-80. https://doi.org/10.12989/sss.2015.15.1.057
  37. Li, J. and Xiu, D. (2009), "A generazlized polynomial chaos based ensemble Kalman filter with high accuracy", J. Comput. Phys., 228(15), 5454-5469. https://doi.org/10.1016/j.jcp.2009.04.029
  38. Liu, L., Lei, Y. and He, M. (2015), "Locating and identifying model-free structural nonlinearities and systems using incomplete measured structural responses", Smart Struct. Syst., 15(2), 409-424. https://doi.org/10.12989/sss.2015.15.2.409
  39. Navon, I., Zou, X., Derber, J. and Sela, J. (1992), "Variational data assimilation with an adiabatic version of the NMC spectral model", Am. Meterol. Soc., 120(7), 1433-1446.
  40. Saad, G. (2007), "Stochastic data assimilation with application to multi-phase flow and health monitoring problems", ProQuest.
  41. Saad, G. and Ghanem, R. (2009), "Characterization of reservoir simulation models using a polynomial chaod-based ensemble Kalman filter", Water Resour. Res., 45(4).
  42. Saad, G. and Ghanem, R. (2011), "Robust structural health monitoring using a polynomial chaos sequential data assimilation technique", Proceedings of the COMPDYN 2011, Corfu, Greece.
  43. Saad, G., Ghanem, R. and Masri, S. (2007), "Robust system identification of strongly non-linear dynamics using a polynomial chaos based sequential data assimilation technique", Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu.
  44. Shen, Y., Golnaraghi, M.F. and Heppler, G.R. (2005), "Analytical and experimental study of the response of a suspension system with a magnetorheological damper", J. Intel. Mat. Syst. Str., 16(2), 135-147. https://doi.org/10.1177/1045389X05048330
  45. Slika, W. and Saad, G. (2016), "An ensemble Kalman filter approach for service life prediction of reinforced concrete structures subject to chloride-induced corrosion", Constr. Build. Mater., 115, 132-142. https://doi.org/10.1016/j.conbuildmat.2016.04.025
  46. Slika, W. and Saad, G. (2016), "A robust polynomial chaos Kalman filter framework for corrosion detection in reinforced concrete structures", Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete Island, Greece.
  47. Slika, W. and Saad, G. (2017), "A practical polynomial chaos Kalman filter implementation using non-linear error projection on a reduced polynomial chaos expansion", Int. J. Numer. Meth. Eng., 112(12), 1869-1885. https://doi.org/10.1002/nme.5586
  48. Sohn, H., Farrar, C., Hemez, F. and Czarnechi, J. (2002), "A review of Structural Health Monitoring litearture 1996-2001", (LA-UR-02-2095).
  49. Song, J. and Der Kiureghian, A. (2006), "Generalized Bouc-Wen model for highly asymmetric hysteresis", J. Eng. Mech., 132(6), 610-618. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:6(610)
  50. Spiridonakos, M.D., Chatzi, E.N. and Sudret, B. (2016), "Polynomial chaos expansion models for the monitoring of structures under operational variability", ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, B4016003.
  51. St-Pierre, M. and Gingras, D. (2004), "Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system", IEEE Intelligent Vehicules Symposium.
  52. Welch, G. and Bishop, G. (2006), An introduction to the Kalman Filter, North Carolina, US, University of North Carolina: Chapel Hill.
  53. Wiener, N. (1938), "The homogeneous chaos", Am. J. Math., 897-936.
  54. Xu, B. and He, J. (2015), "Substructural parameters and dynamic loading identification with limited observations", Smart Struct. Syst., 15(1), 169-189. https://doi.org/10.12989/sss.2015.15.1.169
  55. Ye, M. and Wang, X. (2007), "Parameter estimation of the Bouc-Wen hysteresis model using particle swarm optimization", Smart Mater. Struct., 16(6), 2341. https://doi.org/10.1088/0964-1726/16/6/038
  56. Zhang, H., Foliente, G.C., Yang, Y. and Ma, F. (2002), "Parameter identification of inelastic structures under dynamic loads", Earthq. Eng. Struct. D., 31(5), 1113-1130. https://doi.org/10.1002/eqe.151

Cited by

  1. Vibration monitoring of a small concrete bridge using wavelet transforms on GPS data vol.9, pp.3, 2018, https://doi.org/10.1007/s13349-019-00341-y